Dessiner de 'UML avec PlantUML
&

Guide de référence du langage PlantUML
(Version 1.2025.0)

PlantUML est un composant qui permet de dessiner rapidement des:
o diagrammes de séquence
o diagrammes de cas d’utilisation
o diagrammes de classes
o diagrammes d’objet
o diagrammes d’activité
o diagrammes de composant
¢ diagrammes de déploiement
e diagrammes d’état
o diagrammes de temps
Certains autres diagrammes (hors UML) sont aussi possibles:
e données au format JSON
¢ données au format YAML
o diagrammes de réseaux (nwdiag)
« maquettes d’interface graphique (salt)
o diagrammes Archimate
o diagrammes de langage de description et de spécification (SDL)
o diagrammes ditaa
o diagrammes de Gantt
o diagrammes d’idées (mindmap)
« organigramme (Work Breakdown Structure)
e notation mathématique avec AsciiMath ou JLaTeXMath
o diagrammes entité relation (ER/IE)

Les diagrammes sont définis a ’aide d’un langage simple et intuitif.

1 DIAGRAMME DE SEQUENCE

1 Diagramme de séquence

Créer des diagrammes de séquence avec PlantUML est remarquablement simple. Cette facilité d’utilisation
est largement attribuée a la nature conviviale de sa syntaxe, congue pour étre a la fois intuitive et facile
a mémoriser.

e Syntaxe intuitive :

Tout d’abord, les utilisateurs apprécient la syntaxe simple et intuitive de PlantUML. Cette conception
bien pensée signifie que méme ceux qui sont novices dans la création de diagrammes trouvent qu’il est
facile de saisir les bases rapidement et sans probléeme.

e Corrélation texte-graphique :

Une autre caractéristique distinctive est 1’étroite ressemblance entre la représentation textuelle et la
sortie graphique. Cette corrélation harmonieuse garantit que les ébauches textuelles se traduisent tres
précisément en diagrammes graphiques, offrant une expérience de conception cohérente et prévisible, sans
surprise désagréable dans le résultat final.

¢ Processus d’élaboration efficace :

La forte corrélation entre le texte et le résultat graphique simplifie non seulement le processus de créa-
tion, mais 'accélere également de maniere significative. Les utilisateurs bénéficient d’un processus plus
rationnel, avec moins de révisions et d’ajustements fastidieux.

e Visualisation pendant la rédaction :

La possibilité d’envisager le résultat graphique final tout en rédigeant le texte est une fonction que
beaucoup trouvent inestimable. Elle favorise naturellement une transition en douceur entre le projet
initial et la présentation finale, ce qui améliore la productivité et réduit la probabilité d’erreurs.

o Facilité d’édition et de révision :

Il est important de noter que I’édition des diagrammes existants est un processus sans probléeme. Comme
les diagrammes sont générés a partir de texte, les utilisateurs constatent qu’il est beaucoup plus facile
et plus précis de faire des ajustements que de modifier une image a I'aide d’outils graphiques. Il s’agit
simplement de modifier le texte, un processus beaucoup plus simple et moins sujet aux erreurs que de
faire des changements & travers une interface graphique avec une souris.

PlantUML facilite une approche directe et conviviale de la création et de I’édition de diagrammes de
séquence, répondant aux besoins des novices comme des concepteurs chevronnés. Il exploite habilement
la simplicité des entrées textuelles pour créer des diagrammes visuellement descriptifs et précis, s’imposant
ainsi comme un outil indispensable dans la boite a outils de création de diagrammes.

Vous pouvez en savoir plus sur certaines des commandes courantes de PlantUML pour améliorer votre
expérience de création de diagrammes.

1.1 Exemples de base

Dans les diagrammes de séquence PlantUML, la séquence -> dénote un message envoyé entre deux
participants, qui sont automatiquement reconnus et n’ont pas besoin d’étre déclarés au préalable.

Utilisez les fleches pointillées en employant la séquence —->, offrant une visualisation distincte dans vos
diagrammes.

Pour améliorer la lisibilité sans affecter la représentation visuelle, utilisez des fleches inversées comme <-
ou <--. Cependant, soyez conscient que ceci est spécifiquement pour les diagrammes de séquence et que
les regles different pour d’autres types de diagrammes.

@startuml
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice <-- Bob: Another authentication Response
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 1/ 580

1.2 Déclaration d’un participant 1 DIAGRAMME DE SEQUENCE

]]

| Authentication Request o
' Authentication Response !

-

" Another authentication Request

Another authentication Response |

] s

1.2 Déclaration d’un participant

|
|
[

-
|

Si le mot-clé participant est utilisé pour déclarer un participant, il est possible d’exercer un controle
accru sur ce participant.

L’ordre de déclaration sera I'ordre d’affichage(par défaut).

L’utilisation de ces autres mots-clés pour déclarer des participants modifiera la forme de la représen-
tation du participant :

e actor

e boundary
e control
e entity

e database

e collections

e queue
@startuml

participant Participant as Foo

actor Actor as Fool
boundary Boundary as Foo2
control Control as Foo3
entity Entity as Foo4
database Database as Foob
collections Collections as Foo6
queue Queue as Foo7

Foo -> Fool : To actor

Foo -> Foo2 : To boundary
Foo -> Foo3 : To control

Foo -> Foo4 : To entity

Foo -> Foob5 : To database
Foo -> Foo6 : To collections
Foo -> Foo7: To queue
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 2 / 580

1.2 Déclaration d’un participant 1 DIAGRAMME DE SEQUENCE

N VN
Partici | o T Collecti
articipant | actor Boundary Control Entity Database ollections || | Queue | |

' To actor _ | |
—_— |

! To boundary

Y

! To control ! !

Y

' To entity ! : !

v

| To database ! ! !

Y

! To collectigns ! ! ! !

| To queue | | | | | |

|
o

" Actor Bounldary Control Enfity Database | . J |'r a elﬂl
Participant |)) . ’{“. ~ Caollections || | Queue | |
R R A

k-
v

PN

Renommez un participant en utilisant le mot-clé as.
Vous pouvez également modifier la couleur de fond de I’acteur ou du participant .

@startuml

actor Bob #red

' The only difference between actor

'and participant is the drawing

participant Alice

participant "I have a really\nlong name" as L #99FF99

/' You can also declare:
participant L as "I have a really\nlong name" #99FF99
Y/

Alice->Bob: Authentication Request
Bob->Alice: Authentication Response
Bob->L: Log transaction

@enduml

N\ | . ‘ | have a really
Bob Alice long name
' Authentication Request | !
! Authentication Response | |
' Log fransaction ! -
Bob | Alice ‘ I have a really
long name
A,

Vous pouvez utiliser le mot-clé order pour personnaliser 'ordre d’affichage des participants.

O@startuml

participant Last order 30
participant Middle order 20
participant First order 10

§

Guide de référence du langage PlantUML (1.2025.0) 3/ 580

1.3 Déclaration des participants sur plusieurs lignes

1 DIAGRAMME DE SEQUENCE

@enduml

| First ‘ ‘ Middle | | Last |

|an‘ ‘Mi

ddbl |Lam|

1.3 Déclaration des participants sur plusieurs lignes

Vous pouvez déclarer des participants sur plusieurs lignes.

@startuml

part

part

Part

icipant Participant [
=Title

nn SubTitle nn

icipant Bob

icipant -> Bob

@enduml

[Ref.

QA-15252)

Title
SubTitle |Bob‘
—>
Title | |Bob |

SubTitle

1.4 Caracteres non alphanumérique dans les participants

Si vous voulez mettre des charactéres non alphanumériques, il est possible d’utiliser des guillemets. Et
on peut utiliser le mot clé as pour définir un alias pour ces participants.

@startuml

Alice -> "Bob()" : Hello
"Bob()" -> "This is very\nlong" as Long
' You can also declare:
' "Bob()" -> Long as "This is very\nlong"
Long -—> "Bob()" : ok
@enduml

§

=5

This is very

‘AHOE“

I Hello _ | |
e o ,
—

ok

long

{

][50

This is very
long

Guide de référence du langage PlantUML (1.2025.0)

4 / 580

1.5 Message a soi-méme 1 DIAGRAMME DE SEQUENCE

1.5 Message a soi-méme
Un participant peut s’envoyer un message a lui-méme.
Il est également possible d’avoir plusieurs lignes en utilisant \n

O@startuml
Alice -> Alice: This is a signal to self.\nIt also demonstrates\nmultiline \ntext

@enduml
Alice ‘

I This is a signal to self.
| It also demonstrates
| multiline

I text

<

Alice ‘
@startuml

Alice <- Alice: This is a signal to self.\nIt also demonstrates\nmultiline \ntext
Q@enduml

|AME‘

This is a signal to self. |
It also demonstrates |
multiline X
text i

—

]
[Réf. QA-1361]

1.6 Alignement du texte

L’alignement du texte sur les fleches peut étre défini sur left, right ou center en utilisant skinparam
sequenceMessageAlign.

Vous pouvez également utiliser direction ou reverseDirection pour aligner le texte en fonction de la
direction de la fleche. De plus amples détails et des exemples sont disponibles sur la page skinparam.

@startuml

skinparam sequenceMessageAlign right
Bob -> Alice : Request

Alice -> Bob : Response

@enduml

I Response
-

|Bob| ‘AME|

1.6.1 Texte du message de réponse sous la fleche
Vous pouvez placer le texte du message de réponse sous la fleche, avec la commande skinparam responseMessageBelowAr:

true

§

Guide de référence du langage PlantUML (1.2025.0) 5/ 580

1.7 Autre style de fleches 1 DIAGRAMME DE SEQUENCE

@startuml

skinparam responseMessageBelowArrow true
Bob -> Alice : hello

Bob <- Alice : ok

@enduml

o] [

" hello !
—

- ————
ok |

e

1.7 Autre style de fleches

Vous pouvez changer les fleches de plusieurs facons :
e Pour indiquer un message perdu, terminer la fleche avec x

e Utiliser \ ou / a la place de < ou > pour avoir seulement la partie supérieure ou inférieure de la
fleche.

e Doubler un des caracteres (par exemple, >> ou //)pour avoir une fleche plus fine.
o Utiliser -- a la place de - pour avoir des pointillés.

o Utiliser "0” apres la fleche

o Utiliser une fleche bi-directionnelle <->

@startuml

Bob ->x Alice
Bob -> Alice
Bob ->> Alice
Bob -\ Alice
Bob \\- Alice
Bob //-- Alice

Bob ->0 Alice
Bob o\\-- Alice

Bob <-> Alice
Bob <->0 Alice
Q@enduml

‘ Bob ‘ ‘ Alice |
1.8 Changer la couleur des fleches
Changer la couleur d’une fleche ainsi:

§

Guide de référence du langage PlantUML (1.2025.0) 6 / 580

1.9 Numérotation séquentielle des messages

1 DIAGRAMME DE SEQUENCE

O@startuml

Bob -[#red]> Alice : bonjour
Alice -[#0000FF]->Bob : ok
@enduml

]

I bonjour
LN

1.9 Numérotation séquentielle des messages

Le mot clé autonumber est utilisé pour ajouter automatiquement un numéro incrémentiel aux messages

@startuml

autonumber

Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

@enduml

"1 Authentication Request

e

—
-

' 2 Authentication Response |

e

Vous pouvez spécifier un numéro de début avec autonumber <start> et également un incrément avec

autonumber <start> <increment>.

O@startuml
autonumber
Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber 15
Bob -> Alice : Another authentication Request

Bob <- Alice : Another authentication Response

autonumber 40 10

Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

7 / 580

1.9 Numérotation séquentielle des messages 1 DIAGRAMME DE SEQUENCE

[wer

' 1 Authentication Request !

' 2 Authentication Response !

' 15 Another authentication Request !

.
r o

16 Another authentication Response

4

0 Yet another authentication Request

50 Yet another authentication Response

AT A

‘Bob‘ |AME‘

Vous pouvez spécifier un format pour votre nombre en utilisant entre guillemets.

Le formatage est fait avec la classe Java DecimalFormat (O signifie chiffre, # signifie chiffre et zéro si
absent).

Vous pouvez utiliser une balise html dans le format

@startuml

autonumber "[000]"

Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber 15 "(<u>##</u>)"
Bob -> Alice : Another authentication Request
Bob <- Alice : Another authentication Response

autonumber 40 10 "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

@enduml

I [001] Authentication Request !

_ Message 50 Yet another authentication Response

:, [002] Authentication Response !
: (15) Another authentication Request }_:
E_' (18) Another authentication Response :
E Message 40 Yet another authentication Request ,‘____E

|Bob| ‘Alioe‘

Vous pouvez également utiliser autonumber stop et autonumber resume <increment> <format> pour
respectivement interrompre et reprendre la numérotation automatique de

O@startuml

autonumber 10 10 "[000]"

Bob -> Alice : Authentication Request
Bob <- Alice : Authentication Response

autonumber stop
Bob -> Alice : dummy

§

Guide de référence du langage PlantUML (1.2025.0) 8 / 580

1.9 Numérotation séquentielle des messages 1 DIAGRAMME DE SEQUENCE

autonumber resume "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

autonumber stop
Bob -> Alice : dummy

autonumber resume 1 "Message 0 "
Bob -> Alice : Yet another authentication Request
Bob <- Alice : Yet another authentication Response

@enduml

! [010] Authentication Request !

' [020] Authentication Response |
" dummy -
Message 30 Yetanother authentication Request

Message 40 Yet another authentication Response

d

urmmy

Y

Message 50 Yet another authentication Request

Y

Message 51 Yet another authentication Response

-
-

Votre numéro de départ peut également étre une séquence de 2 ou 3 chiffres utilisant un délimiteur de
champ tel que ., ;, ,, : ou un mélange de ceux-ci. Par exemple: 1.1.10ou1.1:1.

Le dernier chiffre s’incrémente automatiquement.

Pour incrémenter le premier chiffre, utilisez : autonumber inc A. Pour incrémenter le deuxieme chiffre,
utilisez : autonumber inc B

@startuml

autonumber 1.1.1

Alice -> Bob: Authentication request
Bob --> Alice: Response

autonumber inc A

'Now we have 2.1.1

Alice -> Bob: Another authentication request
Bob --> Alice: Response

autonumber inc B

'Now we have 2.2.1

Alice -> Bob: Another authentication request
Bob --> Alice: Response

autonumber inc A

'Now we have 3.1.1

Alice -> Bob: Another authentication request
autonumber inc B

'Now we have 3.2.1

Bob --> Alice: Response

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 9 /580

1.10 Titre, en-téte et pied de page de la page 1 DIAGRAMME DE SEQUENCE

] 3

' 1.1.1 Authentication request !

' _1.1.2 Response |

' 2.1.1 Another authentication request |

2.1.2 Response

2.1 Another authentication request

Y

2.2.2 Response

 J

Vous pouvez également utiliser la valeur de autonumber avec la variable %autonumber?,

@startuml

autonumber 10

Alice -> Bob

note right
the <U+0025>autonumber<U+0025> works everywhere.
Here, its value is ** %autonumbery **

end note

Bob --> Alice: //This is the response Jautonumber?//

@enduml
AHce| ‘ Bob|

-
=

el
;o

the %autonumber% works everywhere.
Here, its value is 10

11 This is the response 11

-
-

|AHDe| ‘ Bob

[Réf. QA-7119)

1.10 Titre, en-téte et pied de page de la page
Le mot clé title est utilisé pour ajouter un titre a la page.
Les pages peuvent afficher des en-tétes et des pieds de page en utilisant header et footer.

@startuml

header Page Header
footer Page Ypage’), of Ylastpage’

title Example Title

Alice -> Bob : message 1
Alice -> Bob : message 2

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 10 / 580

1.11 Découper un diagramme 1 DIAGRAMME DE SEQUENCE

Example Title

|AHG&| |Bob‘

' message 1
_—

1.11 Découper un diagramme

Le mot clé newpage est utilisé pour découper un digramme en plusieurs images.
Vous pouvez mettre un titre pour la nouvelle page juste apres le mot clé newpage.
Ceci est tres pratique pour mettre de tres longs digrammes sur plusieurs pages.
@startuml

Alice -> Bob : message 1
Alice -> Bob : message 2

newpage

Alice -> Bob : message 3
Alice -> Bob : message 4

newpage A title for the\nlast page
Alice -> Bob : message 5

Alice -> Bob : message 6
Q@enduml

| Alice | | Bob ‘
| message 1
—_—

| message 2
_—

| Alice | | Baob ‘

1.12 Regrouper les messages (cadres UML)
Il est possible de regrouper les messages dans un cadre UML a I’aide d’un des mot clés suivants:
e alt/else
e opt
e loop
e par
e break
e critical

e group, suivi par le texte a afficher

§

Guide de référence du langage PlantUML (1.2025.0) 11 / 580

1.13

Etiquette secondaire de groupe

1 DIAGRAMME DE SEQUENCE

Il est aussi possible de mettre un texte a afficher dans ’entéte. Le mot-clé end est utilisé pour fermer le
groupe. Il est aussi possible d’imbriquer les groupes.

Terminer le cadre avec le mot-clé end.

Il est possible d’imbriquer les cadres.

@startuml
Alice -> Bob: Authentication Request

alt

successful case

Bob -> Alice: Authentication Accepted

else some kind of failure

Bob -> Alice: Authentication Failure
group My own label
Alice -> Log : Log attack start

loop 1000 times

Alice -> Bob: DNS Attack

end
Alice -> Log : Log attack end
end

else Another type of failure

Bob -> Alice: Please repeat

end

@enduml

e) i)

| Authentication Request

alt [successful case]

:_, Authentication Accepted

i

[some klpd of failure]
' Authentication Failure

My own label P,

| Log attack start

IEEI /l [1000 times]

| DNS Attack

Y

' Log attack end

Y

Y

[Another type of failure]
_ Please repeat
-z

el (mla

1.13 Etiquette secondaire de groupe

Pour les group, il est possible d’ajouter, entre[et], un texte ou une étiquette secondaire qui sera affiché
dans l’en-téte

@startuml

§

Guide de référence du langage PlantUML (1.2025.0)

12 / 580

1.14 Note sur les messages

1 DIAGRAMME DE SEQUENCE

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Failure
group My own label [My own label 2]

Alice -> Log : Log attack start

loop 1000 times

Alice -> Bob: DNS Attack

end

Alice -> Log : Log attack end
end
@enduml

e

e

! Authentication Request !

' Authentication Failure

My own label

/My own label 2]

| Log attack start |

IEE J [1000 times] |

' DNS Attack

k-
ol

' Log attack end !

.
-

k-

s
[Réf. QA-2503)

1.14 Note sur les messages

5o [

Pour attacher une note & un message, utiliser les mots-clés note left (pour une note & gauche) ou note
right (pour une note & droite) juste aprés le message.

Il est possible d’avoir une note sur plusieurs lignes avec le mot clé end note.

@startuml
Alice->Bob : hello
note left: this is a first note

Bob->Alice : ok
note right: this is another note

Bob->Bob : I am thinking
note left

a note

can also be defined

on several lines

end note

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

13 / 530

1.15 Encore plus de notes 1 DIAGRAMME DE SEQUENCE

AHDE| Bob‘
this is a first note N hello |
—

" ok | is | '5]
< this is another note

a note | s
. am thinkin
can also be defined |; 9

on several lines

][]

1.15 Encore plus de notes

Il est aussi possible de mettre des notes placées par rapport aux participants.
Il est aussi possible de faire ressortir une note en changeant sa couleur de fond.
On peut aussi avoir des notes sur plusieurs lignes a 1’aide du mot clé end note.

O@startuml

participant Alice
participant Bob

note left of Alice #aqua
This is displayed

left of Alice.

end note

note right of Alice: This is displayed right of Alice.
note over Alice: This is displayed over Alice.
note over Alice, Bob #FFAAAA: This is displayed\n over Bob and Alice.

note over Bob, Alice
This is yet another
example of

a long note.

end note

@enduml

=) 2]

This is displayed
left of Alice.

! ‘ This is displayed right of Alice. B]

‘ This is displayed over Alice. B]

This is displayed
over Bob and Alice.

This is yet another
example of
a long note.

e [

§

Guide de référence du langage PlantUML (1.2025.0) 14 / 580

1.16 Changer I'aspect des notes 1 DIAGRAMME DE SEQUENCE

1.16 Changer ’aspect des notes

Vous pouvez préciser la forme géométrique des notes :
e rnote : pour rectangulaire,
e hnote : pour hexagonale.

@startuml
caller -> server : conReq
hnote over caller : idle
caller <- server : conConf
rnote over server

"r" as rectangle

"h" as hexagon
endrnote
rnote over server

this is
on several
lines
endrnote
hnote over caller
this is
on several
lines
endhnote
@enduml
‘ca”er| |semer‘
:cnnReq |
z’_l_‘\ !
conConf

"r" as rectangle
"h" as hexagon

this is

on several
lines
1
.'- n n .'. I

/ this is Y

| onseveral ;|
| lines o
1 1

‘ caller | | server ‘

[Ref. QA-1765]

1.17 Note sur tous les participants [a travers]
Vous pouvez directement faire une note sur tous les participants, avec la syntaxe :
e note across: note_description

@startuml

Alice->Bob:mil

Bob->Charlie:m2

note over Alice, Charlie: 01d method for note over all part. with:\n ""note over //FirstPart, LastPa
note across: New method with:\n""note across""

Bob->Alice

hnote across:Note across all part.

§

Guide de référence du langage PlantUML (1.2025.0) 15 / 580

1.18 Plusieurs notes alignées au méme niveau [/] 1 DIAGRAMME DE SEQUENCE

@enduml

‘AHG&‘ ‘Bob| |Chaﬂb|

m1 !
| I m2
| —_—

Old methed for note over all part. with: j

note over FirstPart, LastPart,

MNew method with: j

note across

- |

Ny
% Mote across all part.
T

‘AHC&‘ ‘Bob| |Chaﬂb|

[Réf. QA-9738]

1.18 Plusieurs notes alignées au méme niveau [/]
Vous pouvez faire plusieurs notes alignées au méme niveau, avec la syntaxe /:
o sans / (par défaut, les notes ne sont pas alignées)

@startuml

note over Alice : initial state of Alice
note over Bob : initial state of Bob

Bob -> Alice : hello

@enduml

AHC&‘ Bob|
initial state of Alice
initial state of Bob

_hello |

I 1
‘AHC& ‘Bob

o avec / (les notes sont alignées)

@startuml

note over Alice : initial state of Alice
/ note over Bob : initial state of Bob
Bob -> Alice : hello

@enduml

‘ initial state of Alice b] ‘ initial state of Bob B]

| hello |

[Réf. QA-35)]

§

Guide de référence du langage PlantUML (1.2025.0) 16 / 580

1.19 Créole (langage de balisage léger) et HTML 1 DIAGRAMME DE SEQUENCE

1.19 Créole (langage de balisage léger) et HTML

11 est également possible d’utiliser le formatage créole (langage de balisage 1éger):

O@startuml
participant Alice
participant "The **Famous** Bob" as Bob

Alice -> Bob : hello —-there--
Some ~~long delay~~

Bob -> Alice : ok

note left
This is **bold*x*
This is //italics//
This is ""monospaced""
This is --stroked--
This is __underlined__
This is ~~waved~~

end note

Alice -> Bob : A //well formatted// message
note right of Alice
This is <back:cadetblue><size:18>displayed</size></back>
__left of__ Alice.
end note
note left of Bob
<u:red>This</u> is <color #118888>displayed</color>
x*<color purple>left of</color> <s:red>Alice</strike> Bob*x*.
end note
note over Alice, Bob
<w:#FF33FF>This is hosted</w> by
end note
Q@enduml

Alice ‘ | The Famous Bob

I hello there o
Some long delay
This is bold
This is italics
This is monospaced ok

This is underlined
This is waved

This is stroked <

A well formatied message

This _j

left of Alice.

This is displayed
left of Alee Bob.

‘Thislshost&d by (Cannot decode) b}

‘ Alice | The Famous Bob |

§

Guide de référence du langage PlantUML (1.2025.0) 17 / 580

1.20 Diviseur ou séparateur 1 DIAGRAMME DE SEQUENCE

1.20 Diviseur ou séparateur

Si vous le souhaitez, vous pouvez diviser un diagramme en utilisant == comme séparateur pour diviser
votre diagramme en étapes logiques

@startuml
== Initialization ==

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

== Repetition ==

Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response

@enduml

AHGE‘ |Bob‘

. Initialization .

| Authentication Request

Authentication Response

|
e
|-
|
|
T
|

%

|
|

!

>

|

|

|

|

|

T

|

| |
| |

Another authentication Request

k.
-

| ¢ @nother authentication Response |

-

‘AHGE‘ |Bob‘

1.21 Référence

Vous pouvez ajouter des références dans un diagramme, en utilisant le mot-clé ref over.

@startuml
participant Alice
actor Bob

ref over Alice, Bob : init
Alice -> Bob : hello

ref over Bob
This can be on
several lines

end ref

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 18 / 580

1.22 Retard 1 DIAGRAMME DE SEQUENCE

This can be on
several lines

Alice ‘ EfflE’l

1.22 Retard

Utiliser ... pour indiquer le passage de temps arbitraire dans le diagramme. Un message peut étre

associé a un retard.

@startuml
Alice -> Bob: Authentication Request

Bob --> Alice: Authentication Response
...5 minutes later...
Bob --> Alice: Bye !

@enduml

o =

| Authentication Request |

| _ Authentication Response |

-

5 minutes later
i

|_' Bye! |

‘AHCE‘ |Bob‘

1.23 Habillage du texte

Pour interrompre de longs messages, vous pouvez ajouter manuellement \n dans votre texte.

Une autre option consiste a utiliser le parametre maxMessageSize

@startuml

skinparam maxMessageSize 50

participant a

participant b

a -> b :this\nis\nmanually\ndone

a —> b :this is a very long message on several words
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

19 / 580

1.24 Séparation verticale 1 DIAGRAMME DE SEQUENCE

this is a
Very
long
message

1.24 Séparation verticale

Utiliser | || pour créer un espace vertical dans le diagramme.

Il est également possible de spécifier un nombre de pixels pour la séparation verticale.
O@startuml

Alice -> Bob: message 1

Bob --> Alice: ok
[

Alice -> Bob: message 2
Bob --> Alice: ok
114511

Alice -> Bob: message 3
Bob --> Alice: ok

@enduml

1.25 Lignes de vie
Vous pouvez utiliser activate et deactivate pour marquer l'activation des participants.
Une fois qu’un participant est activé, sa ligne de vie apparait.

Les ordres activate et deactivate s’applique sur le message situé juste avant.

§

Guide de référence du langage PlantUML (1.2025.0) 20 / 580

1.25 Lignes de vie 1 DIAGRAMME DE SEQUENCE

Le mot clé destroy sert & montrer la fin de vie d’un participant.

@startuml
participant User

User -> A: DoWork
activate A

A -> B: << createRequest >>
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

B --> A: RequestCreated
deactivate B

A -> User: Done
deactivate A

Q@enduml

o] [

| DoWork_ ! !

(o]

«createRequests

DoWork

_ RequestCreated

-
-

: - WorkDones| }

Done X

User| (A s |e
Les lignes de vie peuvent étre imbriquées, et il est possible de les colorer.
@startuml

participant User

User -> A: DoWork
activate A #FFBBBB

A -> A: Internal call
activate A #DarkSalmon

A -> B: << createRequest >>
activate B

B --> A: RequestCreated
deactivate B

deactivate A

A -> User: Done
deactivate A

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

21 / 580

1.26 Retour

1 DIAGRAMME DE SEQUENCE

o] [2

1.26 Retour

' DoWork | !
X Internal call X
| < |
X «createRequests |
X RequestCreated

| _ Done

La commande return génére un message de retour avec un libellé facultatif.

Le point de retour est celui qui a provoqué 'activation la plus récente de la ligne de vie.

La syntaxe est return label ou label, si elle est fournie, est toute chaine acceptable pour les messages

conventionnels.

@startuml

Bob -> Alice : hello
activate Alice

Alice -> Alice : some action
return bye

Q@enduml

o] [

]
" hello_ !
>

some action

<]

bye

-
- ;

‘Bob‘ ‘AME|

1.27 Création d’un participant

Vous pouvez utiliser le mot clé create juste avant la premiere réception d’'un message pour souligner le

fait que ce message crée effectivement ce nouvel objet.

@startuml
Bob -> Alice : hello

create Other
Alice -> Other : new

create control String
Alice -> String
note right : You can also put notes!

Alice --> Bob : ok

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

22 / 580

1.28 Syntaxe raccourcie pour l'activation, la désactivation, la créationDIAGRAMME DE SEQUENCE

o] (]

" hello 1
—_—

Lew ‘ Other

4
R

i | You can also put notes!
! I String | : Iﬁ
<ok | |
‘B{:b‘ ‘Alioel ‘ Olher| St;i(”g
- h 1 -\\I
S

1.28 Syntaxe raccourcie pour Pactivation, la désactivation, la création
Immédiatement apres avoir spécifié le participant cible, la syntaxe suivante peut étre utilisée :

o ++ Activer la cible (une couleurpeut éventuellement suivre)

e —- Désactiver la source

e xx Créer une instance de la cible

e !'1 Détruire une instance de la cible

@startuml

alice -> bob ++ : hello

bob -> bob ++ : self call

bob -> bib ++ #005500 : hello
bob -> george *x : create
return done

return rc

bob -> george !! : delete
return success

Q@enduml

" hello |

g
|

X self call

:
| done !

i e 1 :

: re_ : !

| <t

i delete i S

- —X
| sUccess ! |

[aice] [bob] [oi] [goorge]

Vous pouvez alors mélanger activation et désactivation, sur la méme ligne

@startuml
alice -> bob ++ : hellol

§

Guide de référence du langage PlantUML (1.2025.0) 23 / 580

1.29 Messages entrant et sortant

1 DIAGRAMME DE SEQUENCE

bob
charlie --> alice -
@enduml

-> charlie —-—++ :

@startuml
@startuml
alice ->
bob ->
alice ->
alice —>
@enduml

@enduml

bob -—-++ #gold:
alice --++ #gold:
bob : stepl
bob : step2

: ok

hello2
|a|ice | ‘ bob | |char‘iie ‘
: hellol, : :
! helo2 !
|l Ol‘(i
|a|ice | ‘ bob | |char‘iie ‘
hello
you too

I hello !

—

| you too

step1 !

I step2 !
I

[Réf. QA-4834, QA-9573 et QA-1325))

1.29 Messages entrant

et sortant

Vous pouvez utiliser des fleches qui viennent de la droite ou de la gauche pour dessiner un sous-diagramme.

II faut utiliser des crochets pour indiquer la gauche ”[” ou la droite ”]” du diagramme.

@startuml
[-> A: DoWork

activate A

A -> A: Internal call
activate A

A ->] : << createRequest >>
A<--] : RequestCreated
deactivate A

[<- A: Done

deactivate A

@enduml

§

Guide de référence du lan,

gage PlantUML (1.2025.0)

24 / 580

1.30 Fleches courtes pour les messages entrants et sortants 1 DIAGRAMME DE SEQUENCE

DoWork_ !
Internal call
<
acreateRequests
RequestCreated
_ Done
Vous pouvez aussi utiliser la syntaxe suivante:
@startuml
[-> Bob
[o-> Bob
[o->0 Bob
[x-> Bob
[<- Bob
[x<- Bob
Bob ->]
Bob ->0]
Bob o->0]
Bob ->x]
Bob <-]
Bob x<-]
@enduml
oo
—}:
>
oa»g
»I
-—
*—
—
> 8
*>>0
—X
:-(—
i >&
Bob |

1.30 Fleches courtes pour les messages entrants et sortants

Vous pouvez avoir des fleches courtes en utilisant ?

@startuml

?-> Alice : ""?->""\nxxshort** to actorl

[-> Alice : "W [->""\nxxfrom start** to actorl
[-> Bob : ""[->""\nxxfrom start** to actor2
?-> Bob ;o "M?->"M\pnxkshort** to actor2
Alice ->] : ""—>T""\nfrom actorl **to endxx
Alice ->7 : "M->7""\nxxshort** from actorl
Alice -> Bob : ""->"" \nfrom actorl to actor2

§

Guide de référence du langage PlantUML (1.2025.0) 25 / 580

1.31 Anchors and Duration 1 DIAGRAMME DE SEQUENCE

@enduml

|AME‘ Bob|

T

short to actor1
%

from start to actor

o
-

.

from start to actor2

T

short to actor2
%

=]

from actor1 to end

A

=7

short from actor1

-

from actor1 to actor2

sl
[Réf. QA-310]

1.31 Anchors and Duration

En utilisant teoz il est possible d’ajouter des balises au diagramme et d’utiliser ces balises pour preciser
la duree.

@startuml
!pragma teoz true

{start} Alice -> Bob : commencer a faire quelque chose pour une certaine duree
Bob -> Max : quelque chose

Max -> Bob : quelque chose d'autre

{end} Bob -> Alice : terminer

{start} <-> {end} : la duree en question

@enduml

Alice | Bob ‘ | Max ‘

commencer a faire quelque chose pour une certaine duree

M

quelque chose

.
=

la duree en question quelque chose d'autre

_ terminer v

]

Vous pouvez utiliser 'option de ligne de commande -P pour spécifier le pragma:

=
i

java -jar plantuml.jar -Pteoz=true

[Ref. issue-582]

§

Guide de référence du langage PlantUML (1.2025.0) 26 / 580

1.32 Stéréotypes et décoration 1 DIAGRAMME DE SEQUENCE

1.32 Stéréotypes et décoration
Il est possible de rajouter un stéréotype aux participants en utilisant ”<<” et 7>>".

Dans le stéréotype, vous pouvez ajouter un caractére entouré d’un cercle coloré en utilisant la syntaxe
(X,couleur).

@startuml

participant "Famous Bob" as Bob << Generated >>
participant Alice << (C,#ADD1B2) Testable >>

Bob->Alice: First message

@enduml

«Generated» « Testabla»
Famous Bob Alice

I First message !
—_—

wGenerated» « Testabley
Famous Bob Alice

Par défaut, le caractére guillemet est utilisé pour afficher les stéréotypes. Vous pouvez changer ce com-
portement en utilisant la propriété skinparam guillemet:

O@startuml
skinparam guillemet false
participant "Famous Bob" as Bob << Generated >>

participant Alice << (C,#ADD1B2) Testable >>

Bob->Alice: First message

Q@enduml
<< Generated >> @ << Testable >>
Famous Bob Alice
: First message ,_:
<< Generated >> @ << Testable >>
Famous Bob Alice
@startuml

participant Bob << (C,#ADD1B2) >>
participant Alice << (C,#ADD1B2) >>

Bob->Alice: First message

Q@enduml

‘ @IBob ‘ | (© IAIice ‘

i First message
_

‘@Bob‘ |©Alioe‘

§

Guide de référence du langage PlantUML (1.2025.0) 27 / 580

1.33 Position of the stereotypes 1 DIAGRAMME DE SEQUENCE

1.33 Position of the stereotypes

Tt is possible to define stereotypes position (top or bottom) with the command skinparam stereotypePosition.

1.33.1 Top postion (by default)

O@startuml
skinparam stereotypePosition top

participant A<<st1>>
participant B<<st2>>
A --> B : stereo test

@enduml
wstin wst2n
A B
| stereotest |
wstT» w52
A B
1.33.2 Bottom postion
O@startuml
skinparam stereotypePosition bottom
participant A<<sti1>>
participant B<<st2>>
A --> B : stereo test
@enduml
A
wstT» w52
| stereotest |
A B
wstT» w52

[Ref. QA-18650]

1.34 Plus d’information sur les titres
Vous pouvez utiliser le formatage creole dans le titre.

@startuml
title __Simple__ **communication** example

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 28 / 580

1.34 Plus d’information sur les titres 1 DIAGRAMME DE SEQUENCE

Simple communication example
|AHO&| ‘Bob|

! Authentication Request !

' Authentication Response |

= o)

Vous pouvez mettre des retours a la ligne en utilisant \n dans la description.

@startuml

title __Simple__ communication example\non several lines

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

Simple communication example
on several lines

] 3

! Authentication Request 1

v
i i

' Authentication Response !

| Alice | ‘ Bab |

Vous pouvez aussi mettre un titre sur plusieurs lignes & ’aide des mots-clé title et end title.

@startuml

title

<u>Simple</u> communication example

on <i>several</i> lines and using html
This is hosted by <img:sourceforge.jpg>
end title

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

@enduml

Simple communication example
on several lines and using html
This is hosted by (Cannoct decode)

] =

| Authentication Request |

v

| Authentication Response |

Alice ‘ | Bob ‘

§

Guide de référence du langage PlantUML (1.2025.0) 29 / 580

1.35 Cadre pour les participants 1 DIAGRAMME DE SEQUENCE

1.35 Cadre pour les participants

Il est possible de dessiner un cadre autour de certains participants, en utilisant les commandes box et
end box.

Vous pouvez ajouter un titre ou bien une couleur de fond apres le mot-clé box.
O@startuml

box "Internal Service" #LightBlue

participant Bob

participant Alice

end box
participant Other

Bob -> Alice : hello
Alice -> Other : hello

@enduml

Internal Service

‘BUb||AIiGeHOther|

' hello
LT

hel
20 5

[Bob| lAIice] ‘ Other|

1.36 Supprimer les participants en pied de page
Vous pouvez utiliser le mot-clé hide footbox pour supprimer la partie basse du diagramme.

@startuml

hide footbox
title Footer removed

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

@enduml
Footer removed
‘AHC&‘ |Bob‘

| Authentication Request |

| Authentication Response |

1.37 Personnalisation
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.
Vous pouvez utiliser cette commande :

e Dans la définition du diagramme, comme pour les autres commandes,

e Dans un fichier inclus,

§

Guide de référence du langage PlantUML (1.2025.0) 30 / 580

1.37 Personnalisation 1 DIAGRAMME DE SEQUENCE

e Dans un fichier de configuration, renseigné dans la ligne de commande ou la tdche ANT.
Vous pouvez aussi modifier d’autres parametres pour le rendu, comme le montrent les exemples suivants:

@startuml

skinparam sequenceArrowThickness 2
skinparam roundcorner 20

skinparam maxmessagesize 60

skinparam sequenceParticipant underline

actor User

participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml
P
[})
User | FirstClass | | Second Class | | Last Class |
' DoWork_ | ! X
| Create ! X
| Request i
! DoWork |
| __ WorkDaone 4
| Request :
| _ Created |
. Done | |
User | First Class | | Second Class | | Last Class |
O@startuml

skinparam backgroundColor #EEEBDC
skinparam handwritten true

skinparam sequence {

§

Guide de référence du langage PlantUML (1.2025.0) 31 / 580

1.37 Personnalisation

1 DIAGRAMME DE SEQUENCE

ArrowColor DeepSkyBlue
ActorBorderColor DeepSkyBlue
LifeLineBorderColor blue
LifeLineBackgroundColor #A9DCDF

ParticipantBorderColor DeepSkyBlue
ParticipantBackgroundColor DodgerBlue
ParticipantFontName Impact
ParticipantFontSize 17
ParticipantFontColor #A9DCDF

ActorBackgroundColor aqua
ActorFontColor DeepSkyBlue
ActorFontSize 17
ActorFontName Aapex

}

actor User

participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

32 / 530

1.38 Changer le padding

1 DIAGRAMME DE SEQUENCE

PR s ciss |

' DoWork _ |

1 Dnr‘lﬁ

Re:
| Reg

——

| Gresiie Request = '

> i

L{ N 1
1 I I

1.38 Changer le padding

Il est possible de changer certains parametres du padding.

@startuml

skinparam ParticipantPadding 20

skinparam BoxPadding 10

box "Fool"
participant Alicel
participant Alice2
end box

box "Foo2"
participant Bobl
participant Bob2
end box

Alicel -> Bobl : hello
Alicel -> Out : out
@enduml
Foo1 Foo2
‘Ance1‘ ‘AHG&E‘ Bob1 Bob2
I hello i }' :
i ﬂut i i i
Alicel Alice2 Bob1 Bob2

1.39 Appendix: Examples of all arrow type

1.39.1 Normal arrow

@startuml
participant Alice as a

participant Bob as b
a -> b . n ll_> nn
a ->> b : nn_ss nn
a _\ b : n n_\ nn

3

Guide de référence du langage PlantUML (1.2025.0)

ut

A3
=

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SEQUENCE

a -\\ b "\
a -/ b: "'/ "
a-// b=/
a _>X 'b . n "_>X nn
a x—> b : ""x-> "
a o—> b: ""o-> "
a ->o0 b: ""->0 ""
a o> b : ""o->0 ""
a <_> b . n Il<_> nn
a o<->0 b : ""o<->o""
a x<=>x b : ""x<-—>x""
a ->>0 b ""->> ""
a -\o b: ""-\o "
a-\\o b : ""-\\\\o""
a _/O b . llll_/o nn
a-//o b:""-//o""
a x-> b : ""x->o0 ""
Q@enduml

1.39.2 Itself arrow

@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 34 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SEQUENCE

participant Alice as a
participant Bob as b

a -> a ">
a _>> a : n Il_>> nn
a -\ a @ "=\ "
a -\ a: "TNW
a -/ a: ""-/ "
a-// a:n-//
a _>X a : n Il_>X nn
a x—> a : ""x-> "
a o—> a: ""o—> "
a —>o a: ""->o "
a o> a: ""o->0 ""
a <> a : "'"<-> mn
a o<->0 a : ""o<->o""
a x<->x a : ""x<->x""
a->>0 a: ""->> "
a -\o a: ""-\o "
a-\\o a : ""-\\\\o""
a _/O a : llll_/o nn
a-//o a: ""-//o""
a x->o0 a : ""x->o0 ""
Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 35 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SEQUENCE

= =

s

jial

At

|
P

|
o

O=—>0

o
|
o

i i 1]

B3
[}
e

W M
v
W

|
o

I
o

I
o

|
"
o

{l

'=ffo
|
|

L

K0

Soam
Bl

1.39.3 Incoming and outgoing messages (with ’[’, ’]’)

1.39.4 Incoming messages (with ’[’)

@startuml

participant Alice as a
participant Bob as b
[_> b " [_> nn
[_>> b . " [_>> nn

§

Guide de référence du langage PlantUML (1.2025.0) 36 / 580

1.39 Appendix: Examples of all arrow type

1 DIAGRAMME DE SEQUENCE

-\
-\
-/
-/

/
[->x
[x—>
[o—>
[->0
[o->0
[<->
[o<->0
[x<->x
[->>0
[-\o
[-\\o
[-/0
[-//0
[x->0
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

oo oo oo oo oo oo oo oo oo

Do\
LN
g/
. nn [_// nn
A S
o [x->
; ifom>
;i[>0
. nn [o_>o nn
. nn [<_> nn
: ""[o<->o""
R [X<—>X" "
: " [->>0 "M
¢ ""[-\o "
. nn [_\\\\Oll
D [-/o
D =/fo "

. nn [X_>o nn

vl

|

I

J

I
— |

J

I
Ey
P

i

|
—| e
-~ -

o—
|

I
-
o

T

[m—>c

§

[o<-2

o

|

—

;

-

|

[-%o

=0

—

[a]

|

|
k
1
|
L
]
|
|
k
|
|
k
T
!

[-4o

|

—ile

- - ®-0-0 -0 -

:

R

K->0
L
AHCE‘ BOb|

] o)

37 / 580

1.39 Appendix: Examples of all arrow type 1 DIAGRAMME DE SEQUENCE

1.39.5 Outgoing messages (with ’]’)

@startuml
participant Alice as a
participant Bob as b

a —>] ;"> o
a —>>] poMne>>T e
a -\l ¢ "=\ "
a -\\] S SANVAL
a -/] 2 "=/] .
a -//] :ome=//1 0o
a —->x] poe>x] o
a x—>] R S
a o->] : "Mo->] v
a _>O] . n "_>O] nn
a 0->0] : "Mo->p] "M
a <->] poMre=>] e
a 0<->0] 1 "Mo<=>o]""
a x<->x] ToMrR<=>x]
a _>>o] . n Il_>>o] nn
a -\o] : ""—\o] "
a -\\o] ¢ ""=\\\\o]""
a -/o] : ""=/o] "¢
a -//o] : ""=//o] "
a x—>0] 1 ""x->o0] "M
Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 38 / 580

1.39 Appendix: Examples of all arrow type

1 DIAGRAMME DE SEQUENCE

AHC&| Bob‘

1.39.6 Short incoming and outgoing messages (with ’??)
1.39.7 Short incoming (with ’??)

@startuml

participant Alice as a
participant Bob as b

a -> b : //Long long label//

7-> b : ""7-> "
7->> b ""7->> e
7-\ b "=\ "
?_\\ b . n Il?_\\\\ll n
7~/ b ""7-/ "
?=// b otwe—//
?->x b : ""?->x "M
x> b : ""7x-> "
?O_> b . n Il?o_> nn
7->0 b: ""?-> ""
?70->0 b: ""?0->0 ""
<> b : ""7<=> v
70<->0 b : ""?o0<->o""
?x<->x b : ""?x<->x""
¢

Guide de référence du langage PlantUML (1.2025.0)

39 / 580

1.39 Appendix: Examples of all arrow type

1 DIAGRAMME DE SEQUENCE

7->>0
7-\o

I\l
~
~
]
o o o T T o

?X->0
@enduml

1.39.8 Short outgoing (with ’??)

O@startuml
participant
participant

->7
->>7
-\7
-\\7
-/7
-//7

->x?

[R R R R R R

§

-> b :

: "MP->>0 "M
;mn7-\o M
: "m7-\\\\o "
. ""?_/O nn
; wne—//o M

B ""?X_>o nn

Alice as a
Bob as b

//Long long label//
. ""_>? nn

P SN nn
.o ||_\? nn

: H"_\\\\?HH

: ""_/? nn

. ""_//? nn

. ""_>X? nn

o

I Long long label '
—_— e

e

£

Guide de référence du langage PlantUML (1.2025.0)

40 / 580

1.40 SkinParameter spécifique 1 DIAGRAMME DE SEQUENCE

a X_>? B HHX_>? nn
a o_>? . ""O_>? nn
a _>o? . ""_>o? nn
a o0->07 : ""o—>o07 "
a <_>? . "H<_>? nn
a 0<—>O? : "HO<_>O?HH
a x<->x7 HELLS S T
a _>>O? . "H_>>o? nn
a _\o? . ""_\o? nn
a _\\O? . HH_\\\\O?""
a _/o-? .on "—/07 nn
a —//O? . ""—//O? nn
a x—>o07 ;o ""x=>07 "M
@enduml

el [

I Long long label '
_— e

1.40 SkinParameter spécifique
1.40.1 Par défaut

@startuml
Bob -> Alice : hello

§

Guide de référence du langage PlantUML (1.2025.0) 41 / 580

1.40 SkinParameter spécifique 1 DIAGRAMME DE SEQUENCE

Alice -> Bob : ok
@enduml

o] (]

" hello 1
e

I ok I
-——

][]

1.40.2 LifelineStrategy
« mnosolid (par défaut)

O@startuml

skinparam lifelineStrategy nosolid
Bob -> Alice : hello

Alice -> Bob : ok

@enduml

Bob ‘AME

hmh}

k

0
Bob ‘AME

[Ref. QA-9016)
e solid

Pour avoir une ligne de vie solide dans les diagrammes de séquence, vous pouvez utiliser : skinparam
lifelineStrategy solid

@startuml

skinparam lifelineStrategy solid
Bob -> Alice : hello

Alice -> Bob : ok

Q@enduml

Bob ‘AME

hmh}

k

0
Bob ‘AME

[Ref. QA-279]]

1.40.3 style strictuml

Pour étre conforme & 'UML strict (pour le style de fléche : émet un triangle plutét que des pointes de
fléche pointues), vous pouvez utiliser

e skinparam style strictuml

O@startuml
skinparam style strictuml
Bob -> Alice : hello

§

Guide de référence du langage PlantUML (1.2025.0) 42 / 580

1.41 Masquer un participant non lié

1 DIAGRAMME DE SEQUENCE

Alice -> Bob : ok
@enduml

o] (]

" hello |
—_—

I ok I
—

[Réf. QA-1047)

1.41 Masquer un participant non lié
Par défaut, tous les participants sont affichés

@startuml
participant Alice
participant Bob
participant Carol

Alice -> Bob : hello
@enduml

‘Alioe ‘ ‘ Bab | | Carol ‘

I hello !

‘AHCE‘ ‘Bob| |Ganﬂ‘

Mais vous pouvez hide unlinked participant

@startuml

hide unlinked
participant Alice
participant Bob
participant Carol

Alice -> Bob : hello
@enduml

e]

ihmb é
e 0]
[Réf. QA-4247)

1.42 Colorier un groupe de message
Il est possible de colorer un groupe de message

@startuml
Alice -> Bob: Authentication Request
alt#Gold #LightBlue Successful case

Bob -> Alice: Authentication Accepted
else #Pink Failure

Bob -> Alice: Authentication Rejected
end

§

Guide de référence du langage PlantUML (1.2025.0)

43 / 580

1.43 Mainframe

1 DIAGRAMME DE SEQUENCE

@enduml

]]

| Authentication Request !

alt [Successful case] !
< Authentication Accepted !
[Falll.*ra] :

| _ Authentication Rejected |
-

o] =
[Réf. QA-4750 et QA-6410]

1.43 Mainframe

@startuml

mainframe This is a **mainframe*x*
Alice->Bob : Hello

@enduml

This is a mainfrarne)

‘Alice‘ ‘Bob |

I Hello !
——]

‘Alice ‘ Bab |

[Ref. QA-4019 and Issue#148]

1.44 Slanted or odd arrows

You can use the (nn) option (before or after arrow) to make the arrows slanted, where nn is the number

of shift pixels.
[Available only after v1.2022.6beta+]

@startuml
A ->(10) B: text 10
B ->(10) A: text 10

A ->(10) B: text 10
A (10)<- B: text 10
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

44 / 580

1.44 Slanted or odd arrows 1 DIAGRAMME DE SEQUENCE

@startuml

A ->(40) B++: Rq
B -->(20) A--: Rs
@enduml

[Ref. QA-14145]

@startuml

!pragma teoz true

A ->(50) C: Starts\nwhen 'B' sends

& B ->(25) C: \nBut B's message\n arrives before A's

@enduml
A 3 0

But B's message |

! when'B' sends arrives before A's |

4]])

[Ref. QA-6684]
@startuml

!pragma teoz true

S1 ->(30) S2: msg 1\n
& 32 ->(30) S1: msg 2

note left S1: msg\nS2 to S1
& note right S2: msg\nS1 to S2

§

Guide de référence du langage PlantUML (1.2025.0) 45 / 580

1.45 Parallel messages (with teoz) 1 DIAGRAMME DE SEQUENCE

@enduml

[Ref. QA-1072]

1.45 Parallel messages (with teoz)
You can use the & teoz command to display parallel messages:

@startuml

!pragma teoz true
Alice -> Bob : hello
& Bob -> Charlie : hi
@enduml

‘AHC&‘ ‘Bob| |Chaﬂb|

| hello _ | hi |
LT

‘AHC&\ ‘Bobl |Chaﬂb|

(See also Teoz architecture)

§

Guide de référence du langage PlantUML (1.2025.0) 46 / 580

2 DIAGRAMME DE CAS D’UTILISATION

2 Diagramme de cas d’utilisation

Un diagramme de cas d’utilisation est une représentation visuelle utilisée en ingénierie logicielle
pour décrire les interactions entre les acteurs du systéme et le systéme lui-méme. Il capture le
comportement dynamique d’un systeme en illustrant ses cas d’utilisation et les roles qui interagissent
avec eux. Ces diagrammes sont essentiels pour spécifier les exigences fonctionnelles du systeme et
comprendre comment les utilisateurs interagiront avec le systeme. En fournissant une vue de haut niveau,
les diagrammes de cas d’utilisation aident les parties prenantes a comprendre la fonctionnalité du systéme
et sa valeur potentielle.

PlantUML offre une approche unique pour créer des diagrammes de cas d’utilisation grace a son langage
textuel. L’un des principaux avantages de 'utilisation de PlantUML est sa simplicité et son efficacité.
Au lieu de dessiner manuellement des formes et des connexions, les utilisateurs peuvent définir leurs dia-
grammes a ’aide de descriptions textuelles intuitives et concises. Cela permet non seulement d’accélérer
le processus de création des diagrammes, mais aussi d’en assurer la cohérence et la précision. La
capacité a s’intégrer a diverses plateformes de documentation et sa large gamme de formats de sortie sup-
portés font de PlantUML un outil polyvalent pour les développeurs comme pour les non-développeurs.
Enfin, comme il s’agit d’un logiciel libre, PlantUML peut se vanter d’avoir une forte communauté qui
contribue continuellement & son amélioration et offre une richesse de ressources pour les utilisateurs a
tous les niveaux.

2.1 Cas d’utilisation

Les cas d’utilisation sont mis entre parentheses (car deux parentheses forment un ovale).

Vous pouvez aussi utiliser le mot-clé usecase pour définir un cas d’utilisation. Et vous pouvez définir un
alias avec le mot-clé as. Cet alias sera ensuite utilisé lors de la définition des relations.

@startuml

(First usecase)

(Another usecase) as (UC2)
usecase UC3

usecase (Last\nusecase) as UC4

@enduml

_ Firstusecase _ Another usecase

J.l.-__”_-.l.‘. ./.f'-- --""\.\.
Cucz) (st
o _ usecase /

2.2 Acteurs

Le nom définissant un acteur est placé entre deux points.

Vous pouvez également utiliser le mot-clé actor pour définir un acteur. Un alias peut étre attribué a
I’aide du mot-clé as et peut étre utilisé ultérieurement a la place du nom de ’acteur, par exemple lors
de la définition des relations.

Les exemples suivants montrent que la définition des acteurs est facultative.
O@startuml

:First Actor:

:Another\nactor: as Man2

actor Woman3
actor :Last actor: as Personl

§

Guide de référence du langage PlantUML (1.2025.0) 47 / 580

2.3 Changer le style d’acteur

2 DIAGRAMME DE CAS D’UTILISATION

@enduml

A,

A,

) Another
First Actor
actor
I/_\I I/_\I
Woman3 Last actor

2.3 Changer le style d’acteur

Vous pouvez changer le style d’acteur de stick man (par défaut) & :

e un awesome man avec la commande skinparam actorStyle awesome;

o un hollow man avec la commande skinparam actorStyle hollow .

2.3.1 Stick man (par défaut)

@startuml
:User: --> (Use)
"Main Admin" as Admin

"Use the application" as (Use)
Admin --> (Admin the application)

@enduml
User

¢ Usetheapplication
Un==== homme impressionnant ====
O@startuml
skinparam actorStyle awesome
:User: --> (Use)
"Main Admin" as Admin

"Use the application" as (Use)
Admin --> (Admin the application)
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

:-;ﬁdmin the application----

A,

Main Admin

Y
\
.

48 / 580

2.4 Description des cas d’utilisation 2 DIAGRAMME DE CAS D’UTILISATION

[| [)
User ain Admin
(" Usetheapplication > ¢ Admin the application

[Réf. QA-10493]

2.3.2 Homme creux

O@startuml
skinparam actorStyle Hollow
:User: --> (Use)

"Main Admin" as Admin

"Use the application" as (Use)
Admin --> (Admin the application)
@enduml

(] (]

oy e

5 75

W W

User Main Admin

(Use the application) (Admin the application

[Réf. PR#396]

2.4 Description des cas d’utilisation
Si vous voulez une description sur plusieurs lignes, vous pouvez utiliser des guillemets.

Vous pouvez aussi utiliser les séparateurs suivants: -- .. == __. Et vous pouvez mettre un titre dans les
séparateurs.

@startuml

usecase UC1 as "You can use

several lines to define your usecase.
You can also use separators.

Several separators are possible.

And you can add titles:
..Conclusion..

This allows large description."

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 49 / 580

2.5 Utiliser un package 2 DIAGRAMME DE CAS D’UTILISATION

o You can use -
p several lines to define your usecase.
You can also use separators. b,

(Several separators are possible.

And you can add titles:

This allows large description. .~

2.5 Utiliser un package
Vous pouvez utiliser des packages pour regrouper des acteurs ou des cas d’utilisation

@startuml

left to right direction

actor Guest as g

package Professional {
actor Chef as c
actor "Food Critic" as fc

}

package Restaurant {
usecase "Eat Food" as UC1
usecase "Pay for Food" as UC2
usecase "Drink" as UC3
usecase "Review" as UC4

}
fc --> UC4
g -—> UC1
g —-—-> UC2
g —-—-> UC3
Q@enduml
Restaurant\
O | ¢ EstFood D
T
AN -_‘-_‘-_"“‘-‘—-._,__
SN T .
Guest (_ PayforFood

Professional l}
% \» Drink ;

Chef (Review

P
A
A,

Food Critic

Vous pouvez utiliser rectangle pour modifier 'affichage du paquet

Ostartuml
left to right direction

§

Guide de référence du langage PlantUML (1.2025.0) 50 / 580

2.6 Exemples trés simples

2 DIAGRAMME DE CAS D’UTILISATION

actor "Food Critic" as fc
rectangle Restaurant {
usecase "Eat Food" as UC1
usecase "Pay for Food" as UC2
usecase "Drink" as UC3

}

fc --> UC1
fc --> UC2
fc --> UC3
Q@enduml

A,

Food Critic\

Restaurant

(_EatFood O
T

—)v’[_:_'_-_--i:’ay for Food

- DI’II"IK__/'

2.6 Exemples tres simples

Pour lier les acteurs et les cas d’utilisation, la fleche —-> est utilisée.

Plus il y a de tirets — dans la fleche, plus elle sera longue. Vous pouvez ajouter un libellé sur la fleche, en
ajoutant un caracteére : dans la définition de la fleche.

Dans cet exemple, vous voyez que User n’a pas été défini préalablement, et qu’il est implicitement reconnu

comme acteur.

@startuml

User -> (Start)
User --> (Use the application) : A small

:Main Admin: ---> (Use the application)
@enduml
Main Admin
T . This is
—>(_ Start)' yet another
o I label

User
small label

¢ Use the application

S

§

Guide de référence du langage PlantUML

label

: This is\nyet another\nlabel

(1.2025.0)

51 / 580

2.7 Héritage 2 DIAGRAMME DE CAS D’UTILISATION

2.7 Héritage
Si un acteur ou un cas d’utilisation en étend un autre, vous pouvez utiliser le symbole <|--.

@startuml
:Main Admin: as Admin
(Use the application) as (Use)

User <|-- Admin
(Start) <|-- (Use)

@enduml

_ — _"'w\
Y Start J

A e —

{f-Usetheapphcaﬁon-T)

Main Admin

2.8 Notes

Vous pouvez utiliser les mots clés note left of ,note right of ,note top of ,note bottom of pour
définir les notes en relation avec un objet.

Une note peut également étre définie seule avec des mots-clés, puis liée & d’autres objets en utilisant le
symbole .. .

O@startuml
:Main Admin: as Admin
(Use the application) as (Use)

User -> (Start)
User --> (Use)

Admin ---> (Use)
note right of Admin : This is an example.

note right of (Use)

A note can also

be on several lines
end note

note "This note is connected\nto several objects." as N2
(Start) .. N2

N2 .. (Use)

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 52 / 580

2.9 Stéréotypes 2 DIAGRAMME DE CAS D’UTILISATION

]
T S
—)-1 Start —=— This is an example.
A,
User Main Admin
This note is connected
to several ob]ects
I
|
I
d Use the apphcatlon) —— Anole can also
e— -] be on several lines

2.9 Stéréotypes
Vous pouvez ajouter des stéréotypes a la définition des acteurs et des cas d’utilisation avec << et >>.

@startuml

User << Human >>

:Main Database: as MySql << Application >>
(Start) << One Shot >>

(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)

@enduml

«Hu:;nan» «Application»

P
I I | |
\ - R

>/ «One Sho!»
\ St’:‘lri /

- AN

User \ ‘/Man Database

E T «Main»
“._Use the application

Y
]
-

2.10 Changer les directions des fleches

Par défaut, les liens entre les classes ont deux tirets —- et sont orientés verticalement. Il est possible de
mettre des liens horizontaux en mettant un seul tiret (ou un point) comme ceci:

@startuml

:user: --> (Use case 1)
:user: -> (Use case 2)
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 53 / 580

2.11 Découper les diagrames 2 DIAGRAMME DE CAS D’UTILISATION

P

{ |
ez
A —_—

user

 Usecase1

Vous pouvez aussi changer le sens en renversant le lien :

@startuml

(Use case 1) <.. :user:
(Use case 2) <- :user:
Q@enduml

|
|

|

|,_\|

L

 Usecase2 <—
m—— — A

user

Il est possible de changer la direction d’une fleche en utilisant les mots-clé left, right, up ou down a
Iintérieur de la fleche :

@startuml

:user: -left-> (dummyLeft)
:user: -right-> (dummyRight)
:user: -up-> (dummyUp)
:user: -down-> (dummyDown)
Q@enduml

 dummyUp

P

ummyRight_-_:f:'

[}]
¢ dummyLeft _'_'_'j:-(—T—)—:'_f_'_'__d

user

i:idummyDown_J

Vous pouvez abréger les noms des fleches en indiquant seulement le premier caractére de la direction (par
exemple -d- pour -down~-) ou les deux premiers caractéres (-do-).

Il est conseillé de ne pas abuser de cette fonctionnalité : Graphviz qui donne d’assez bon résultats quoique
non ’garantis”.

2.11 Découper les diagrames

Le mot-clé newpage est utilisé pour découper un diagrame en plusieurs images.

@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 54 / 580

2.12 De droite a gauche

2 DIAGRAMME DE CAS D’UTILISATION

ractorl: --> (Usecasel)
newpage
tactor2: --> (Usecase?2)
@enduml

2.12 De droite a gauche

Le comportement général de construction des diagrammes est de haut en bas.

@startuml

'default

top to bottom direction
userl --> (Usecase 1)
user2 --> (Usecase 2)

@enduml

o~

Usecase 1

e

¢ Usecase2

Il est possible de changer pour aller plutot de la droite vers la gauche avec la commande left to right
direction. Le résultat est parfois meilleur dans ce cas.

@startuml

left to right direction
userl --> (Usecase 1)
user2 --> (Usecase 2)

@enduml

P
[

L
——>(Usecase2
A — "

user2

P
(]

o
—> Usecase1
A ——— e

usert

_ See also "Change diagram orientation’ on [Deployment diagram](deployment-diagram) page.__

§

Guide de référence du langage PlantUML (1.2025.0) 55 / 580

2.13 La commande Skinparam 2 DIAGRAMME DE CAS D’UTILISATION

2.13 La commande Skinparam
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.
Vous pouvez utiliser cette commande :

e Dans la définition du diagramme, comme pour les autres commandes,

e Dans un fichier inclus,

¢ Dans un fichier de configuration, renseigné dans la ligne de commande ou la tdche ANT.

Vous pouvez aussi spécifier les polices et les couleurs pour les acteurs et cas d’utilisation avec des stéréo-
types.

@startuml
skinparam handwritten true

skinparam usecase {
BackgroundColor DarkSeaGreen
BorderColor DarkSlateGray

BackgroundColor<< Main >> YellowGreen
BorderColor<< Main >> YellowGreen

ArrowColor 0Olive
ActorBorderColor black
ActorFontName Courier

ActorBackgroundColor<< Human >> Gold
by

User << Human >>

:Main Database: as MySql << Application >>
(Start) << One Shot >>

(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)

@enduml
wHumarn» wApplication»
(;l p— o --"'a\ |l‘ _:|
~ _, «OneShot» ——
/-'\\ e ___Etfﬂ__’___/ /_-\\
User Main Database
\\ o
Y rd
\\ //
Y ¥
aMair»

Use the application

2.14 Exemple complet

@startuml

left to right direction
skinparam packageStyle rectangle
actor customer

§

Guide de référence du langage PlantUML (1.2025.0) 56 / 580

2.15 Business Use Case 2 DIAGRAMME DE CAS D’UTILISATION

actor clerk

rectangle checkout {
customer -- (checkout)
(checkout) .> (payment) : include
(help) .> (checkout) : extends

(checkout) -- clerk
}
@enduml
checkout
| > payment >
, rd
¢ —
inglude (help)
A ~—
Pl ~ - | P
LA ~ | extends L
1 v
customer clerk
2.15 Business Use Case
Vous pouvez ajouter / pour créer un Business Use Case.
2.15.1 Business Use Case
@startuml
(First usecase)/
(Another usecase)/ as (UC2)
usecase/ UC3
usecase/ (Last\nusecase) as UC4
@enduml
¢ First usecase / {\'---;ﬁ.nother usecase)
- ey i

2.15.2 Acteur commercial
@startuml

:First Actor:/
:Another\nactor:/ as Man2

actor/ Woman3
actor/ :Last actor: as Personl

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 57 / 580

2.16 Modifier la couleur et le style des fléches (style en 1BndD)IAGRAMME DE CAS D’UTILISATION

I/_\
I/'\ L
\f}

A,
AN 4 -
Ancther

First Actor aclor

(F (_F
Woman3 Last actor

[Réf. QA-12179]

2.16 Modifier la couleur et le style des fleches (style en ligne)

Vous pouvez modifier la couleur ou le style des fleches individuelles en utilisant la notation suivante en
ligne

e #color;line. [bold|dashed|dotted] ;text:color

@startuml

actor foo

foo --> (bar) : normal

foo -—> (barl) #line:red;line.bold;text:red : red bold

foo --> (bar2) #green;line.dashed;text:green : green dashed
foo ——> (bar3) #blue;line.dotted;text:blue : blue dotted
Q@enduml

normal [red bold ﬂgmentmshed-” blue dotted
(bar2)

(bar) (bart)

(bar3)

[Réf. QA-3770 et QA-3816] [Voir une fonctionnalité similaire sur le diagramme de déploiement ou le
diagramme de classes]

2.17 Modifier la couleur et le style d’un élément (style en ligne)
Vous pouvez modifier la couleur ou le style d’un élément individuel en utilisant la notation suivante
o #[colorlback:color];line:color;line.[bold|dashed|dotted] ;text:color

@startuml

actor a

actor b #pink;line:red;line.bold;text:red

usecase c #palegreen;line:green;line.dashed;text:green
usecase d #aliceblue;line:blue;line.dotted;text:blue
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 58 / 580

2.18 Afficher les données JSON sur le diagramme Usecase DIAGRAMME DE CAS D’UTILISATION

[Réf. QA-5340 et adapté de QA-6852]

2.18 Afficher les données JSON sur le diagramme Usecase
2.18.1 Exemple simple

@startuml
allowmixing

actor Actor
usecase Usecase

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]

3

@enduml

JSON
fruit | Apple
size |Large

color | Red

Green

[Ref. QA-15481]

Pour un autre exemple, voir la page JSON.

§

Guide de référence du langage PlantUML (1.2025.0) 59 / 580

3 DIAGRAMME DE CLASSES

3 Diagramme de classes

Les diagrammes de classes sont congus & 'aide d’une syntaxe qui refléte celle traditionnellement employée
dans les langages de programmation. Cette ressemblance favorise un environnement familier pour les
développeurs, facilitant ainsi un processus de création de diagrammes plus facile et plus intuitif.

Cette approche de la conception est non seulement succincte, mais elle permet également de créer des
représentations a la fois concises et expressives. De plus, elle permet la représentation des relations entre
les classes & travers une syntaxe qui fait écho a celle des diagrammes de séquence, ouvrant la voie & une
représentation fluide et perspicace des interactions entre les classes.

Au-dela des représentations structurelles et relationnelles, la syntaxe des diagrammes de classes sup-
porte d’autres enrichissements tels que I’inclusion de notes et I'application de couleurs, permettant aux
utilisateurs de créer des diagrammes qui sont & la fois informatifs et visuellement attrayants.

Vous pouvez en apprendre plus sur certaines des commandes communes dans PlantUML pour améliorer
votre expérience de création de diagrammes.

3.1 Elément déclaratif

@startuml
abstract abstract
abstract class "abstract class"

annotation annotation

circle circle

O circle_short_form
class class

class class_stereo <<stereotype>>
diamond diamond

<> diamond_short_form
entity entity

enum enum

exception exception
interface interface
metaclass metaclass

protocol protocol
stereotype stereotype

struct struct

Q@enduml

(®) avstract| |(B)abstract class| | (@ annotation ~

circle circle_short_form

@ (@) o o [@ewy

enum . exception @ interface metaclass @ protacal

stereotype @ struct

§

Guide de référence du langage PlantUML (1.2025.0) 60 / 580

3.2 Relations entre classes 3 DIAGRAMME DE CLASSES

[Réf. pour protocol et struct: GH-1028, pour exception: QA-16258]

3.2 Relations entre classes

Les relations entre les classes sont définies en utilisant les symboles suivants :

Type Symbole | Objectif

Extension <|-- Spécialisation d’une classe dans une hiérarchie
Implémentation | <| .. Réalisation d’une interface par une classe
Composition *—= La partie ne peut exister sans le tout
Agrégation o—- La partie peut exister indépendamment du tout
Dépendance -—> L’objet utilise un autre objet

Dépendance Lo Une forme plus faible de dépendance

Il est possible de substituer -- par .. pour obtenir une ligne en pointillée.
Grace a ces regles, il est possible de faire les diagrammes suivants :

@startuml

Class01 <|-- Class02
Class03 *—- Class04
Class05 o-- Class06
Class07 .. Class08
Class09 -- Classl10
@enduml

(©)classo1, |(©)cClasso3| (€©)Class0s| |(©)Class07| |(€)Class09

(©ciass02, |(©)cClassoa| (C)Class0s| |(©)Classo8| |(€)Class10

@startuml

Classll <|.. Classi2
Class13 --> Classl4
Class1b5 ..> Classl6
Class17 ..|> Classi8
Class19 <--*x Class20

@enduml
(©chass11| |([©cClass13 |[(©)cClass1s| |(©)cass17| |(€)Class19
I I
z,\-\ | |
| | |
! ¥ v V ¢
(©ciass12| |(©)cClass14 |[(©)cClassi6] |(C)ciass18] |(C)Class20
@startuml

Class21 #-- Class22
Class23 x-- Class24
Class25 }-- Class26
Class27 +-- Class28
Class29 ~-- Class30
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 61 / 580

3.3 Libellés sur les relations 3 DIAGRAMME DE CLASSES

(©ciass21| |(©)cClass23 |[(©)Class2s| |(C)ciassz7| |(C)Class29
(!
P

(©ciass22 |(©)Class24) |[(©)Class26] |(C)ciass28] (C)Class30

3.3 Libellés sur les relations

Il est possible de rajouter un libellé sur une relation, en utilisant les deux points :, suivi du texte du
libellé.

Pour les cardinalité, vous pouvez utiliser des guillemets "" des deux cotés de la relation.

O@startuml
ClassO1 "1" *-- "many" ClassO2 : contains

Class03 o-- Class04 : aggregation

Class05 --> "1" Class06
@enduml

(©ciasso1| |(©)cClass03, |(€)Classo5

contains aggregation

many 1

f

\
(©classo2 |(©)Class4| |(€)Class06

Vous pouvez ajouter une fleche désignant quel objet agit sur I'autre en utilisant < ou > au début ou a la
fin du libellé.

@startuml
class Car

Driver - Car : drives >
Car *- Wheel : have 4 >
Car -- Person : < owns

@enduml

@Driver > drives @Garl"'“ﬂ“eq‘ @Wheel

§

Guide de référence du langage PlantUML (1.2025.0) 62 / 580

3.4 Caractéres non alphabétiques dans les noms d’éléments et les étiglietbdAdeRAIMMiEs DE CLASSES

3.4 Caracteres non alphabétiques dans les noms d’éléments et les étiquettes
de relations

Si vous voulez utiliser autre chose que des lettres dans les noms des classes (ou les enums...), vous pouvez

o Utiliser le mot-clé as dans la définition de la classe
e Metter des guillemets "" autour du nom de la classe

@startuml
class "Voici ma classe" as classel
class classe2 as "Cette fagon fonctionne aussi"

classe2 *-- "machin/truc" : utilise
@enduml

©Voici ma classe ©Cette facon fonctionne aussi

utilise

© machin/truc

Si un alias est assigné a un élément, le reste du fichier doit se référer a cet élément par cet alias et non
son nom.

3.4.1 Commencer un nom avec $

Note : les noms qui commencent par $ ne peuvent pas étre cachés ou supprimés par apres, parce que
les commandes hide et remove les considéreront comme une $etiquette et non comme un nom de
composant. Pour supprimer de tels éléments, ils doivent avoir un alias ou une étiquette.

@startuml

class $C1

class $C2 $C2

class "$C2" as dollarC2
remove $C1

remove $C2

remove dollarC2

Q@enduml

(©sct

Notez aussi que les noms qui commencent par $ sont valides, mais que pour assigner un alias & un tel
élément le nom doit étre entre guillemets "".

3.5 Ajouter des méthodes

Pour déclarer des méthodes ou des champs, vous pouvez utiliser le caractere : suivi de la méthode ou
du champ.

Le systeme utilise la présence de parentheéses pour choisir entre méthodes et champs.
@startuml
Object <|-- ArrayList

Object : equals()

§

Guide de référence du langage PlantUML (1.2025.0) 63 / 580

3.6 Définition de la visibilité 3 DIAGRAMME DE CLASSES

ArraylList : Object[] elementData
ArrayList : size()

@enduml

(©) object

equals()

(©) ArrayList
Object] elementData
size()

Il est possible de regrouper tous les champs et méthodes en utilisant des crochets {}.
Notez que la syntaxe est tres souple sur 'ordre des champs et des méthodes.

O@startuml

class Dummy {
String data
void methods()

}

class Flight {
flightNumber : Integer
departureTime : Date

X

@enduml

(©) pummy ©) Fiight

String data flightNumber : Integer
void methods() departureTime : Date

You can use {field} and {method} modifiers to override default behaviour of the parser about fields
and methods.

@startuml

class Dummy {
{field} A field (despite parentheses)
{method} Some method

}

@enduml

@ Dummy

A field (despite parentheses)
Some method

3.6 Définition de la visibilité

Lorsque vous définissez des méthodes ou des champs, vous pouvez utiliser des caractéres pour définir la
visibilité de 1’élément correspondant

§

Guide de référence du langage PlantUML (1.2025.0) 64 / 580

3.6 Définition de la visibilité 3 DIAGRAMME DE CLASSES

Caractéere | Icone pour le champ | Icone de la méthode | Visibilité

_ O m private

: @ protected

~ Fa FY package private

+ [+] @ public
Ostartuml

class Machin {
—champl
#champ2
~methodel ()
+methode2 ()

}

@enduml

@ Machin

0O champ
champ2

4 methodel()
o methode2()

Vous pouvez désactiver cette fonctionnalité a ’aide de la commande skinparam classAttributelconSize
0:

O@startuml
skinparam classAttributelconSize 0
class Machin {

—-champ1
#champ?2
~methodel ()
+methode2 ()
}
Q@enduml
(©) Machin
-champ
#champ2
~methode()
+methode2()

Les indicateurs de visibilité sont facultatifs et peuvent étre omis individuellement sans désactiver les
icones globalement a ’aide de skinparam classAttributeIconSize O.

@startuml
class Machin {
champ1l
champ?2
methodel ()
methode2()
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 65 / 580

3.7 Abstrait et statique 3 DIAGRAMME DE CLASSES

() Machin
champ

champ2

methode1()
methode2()

Dans le cas ol vous voudriez utiliser des méthodes ou champs qui commencent par I'un des caracteres
-, #, ~ ou +, échappez le premier caractére avec \. C’est utile dans certains langages, par exemple pour
définir le destructeur de la classe Machin : () :

@startuml
class Machin {
champ1
\~Machin()
methodel ()

}

@enduml

(©) Machin

champ

~Machin()
methode1()

[Ref. [QA-4755](https://forum.plantuml.net/4755/provide-display-visibility-attributes-private-protected)]

3.7 Abstrait et statique

Vous pouvez définir une méthode statique ou abstraite ou un champ utilisant {static} ou {abstract}
modificateur.

Ce modificateur peut étre utilisé au début ou a la fin de la ligne. Vous pouvez alors utiliser {classifier}
plutot que {static}.

@startuml
class Dummy {
{static} String id
{abstract} void methods()
}

@enduml

@ Dummy

String id
void methods()

3.8 Corps de classe avancé

Par défaut, méthodes et champs sont automatiquement regroupés par PlantUML. Vous pouvez utiliser
un séparateur pour définir votre propre maniere d’ordonner les champs et les méthodes. Les séparateurs
suivants sont possibles : -- .. ==

Vous pouvez aussi utiliser les titres dans les séparateurs.

@startuml

class Fool {
You can use
several lines

§

Guide de référence du langage PlantUML (1.2025.0) 66 / 580

3.9 Notes et stéréotypes 3 DIAGRAMME DE CLASSES

as you want

and group

things together.

You can have as many groups
as you want

End of class

3

class User {
. Simple Getter ..
+ getName()
+ getAddress()
. Some setter ..
+ setName ()
__ private data __
int age
-- encrypted --
String password
}

@enduml

@ Foo1 | @ User

You can use - Simple Getter—

several lines o getName()

as you want o getAddress()

andgroup | [T Some setter—

things together. i
—private data—

You can have as many groups int age

as you want ncrypted

End of class | String password

3.9 Notes et stéréotypes
Stéréotypes sont définies avec le mot clé class, << et >>.

Vous pouvez aussi définir une note en utilisant les mots clés note left of , note right of , note top
of , note bottom of.

Vous pouvez aussi définir une note sur la derniére classe utilisant note left, note right, note top,
note bottom.

Une note peut aussi étre définie le mot clé note, puis étre lié a un autre objet en utilisant le symbole . ..

O@startuml
class Object << general >>
Object <|--- ArrayList

note top of Object : In java, every class\nextends this one.

note "This is a floating note" as N1

note "This note is connected\nto several objects." as N2
Object .. N2

N2 .. ArraylList

class Foo

§

Guide de référence du langage PlantUML (1.2025.0) 67 / 580

3.10 Plus de notes 3 DIAGRAMME DE CLASSES

note left: On last defined class

@enduml

extends this one.

On last defined class '5;_—__? ©F°° e e e j | This is a floating note H

© ageneraly
Object

This note is connected
to several objects.

3.10 Plus de notes

11 est également possible d’utiliser quelques balises HTML (voir expression créole) comme

<u>

<i>

<s> , , <strike>

 ou
<color:#AAAAAA> ou <color:colorName>

<size:nn> pour changer la taille de la police

 ou <img:file>: le fichier doit étre accessible par le systeme de fichiers

Vous pouvez aussi avoir une note sur plusieurs lignes.

Vous pouvez aussi définir une note sur la derniere classe définie en utilisant note left, note right,
note top, note bottom

@startuml

class Foo
note left: On last defined class

note top of Foo
In java, <size:18>every</size> <u>class</uw>
extends
<i>this</i> one.

end note

note as N1
This note is <u>also</u>
<color:royalBlue>on several</color>
<s>words</s> lines

§

Guide de référence du langage PlantUML (1.2025.0) 68 / 580

3.11 Note sur un champ (champ, attribut, membre) ou une méthode3 DIAGRAMME DE CLASSES

And this is hosted by <img:sourceforge.jpg>

end note
@enduml
) This note is also
Injava, EVery class on several
extends woerds lines
ihis one. And this is hosted by (Cannct decocde)

|
On last defined class b;_—__—, (©Foo

3.11 Note sur un champ (champ, attribut, membre) ou une méthode

11 est possible d’ajouter une note sur un champ (champ, attribut, membre) ou une méthode.

3.11.1 Note sur un champ ou une méthode

@startuml
class A {
{static} int counter
+void {abstract} start(int timeout)
}
note right of A::counter
This member is annotated
end note
note right of A::start
This method is now explained in a UML note
end note
@enduml

©~

int counter——___ T I
¢ counter ._.__.._a_'_"_'] This method is now explained in a UML ncrteb]
© void startfint timeout) T~

-;'_'_': This memberis annotated B}

3.11.2 Note sur une méthode de méme nom

@startuml

class A {

{static} int counter

+void {abstract} start(int timeoutms)

+void {abstract} start(Duration timeout)

}

note left of A::counter
This member is annotated

end note

note right of A::"start(int timeoutms)"
This method with int

end note

note right of A::"start(Duration timeout)"
This method with Duration

end note

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 69 / 580

3.12 Note sur les liens

3 DIAGRAMME DE CLASSES

| This member is annotated b‘[‘_:—--int counter

f”r
A

© & : This method with int B]

o void start(int timeoutms)” | -
o void start(Duration timeout)|”

- |
-1

< This method with Duration B]

[Réf. QA-3474 et QA-5835)

3.12 Note sur les liens

Il est possible d’ajouter une note sur un lien, juste apres la définition d’un lien, utiliser note on link.

Vous pouvez aussi utiliser note left on link, note right on link, note top on link, note bottom
on link si vous voulez changer la position relative de la note avec I’étiquette.

@startuml

class Dummy
Dummy --> Foo : A link
note on link #red: note that is red

Dummy --> Foo2 : Another link
note right on link #blue

this is my note on right link
and in blue

end note

@enduml

©Dummy

@Fm

(©)Foo2

3.13 Classe et interface abstraites

Vous pouvez déclarer une classe abstraite a ’aide des mots-clés abstract ou abstract class.

La classe sera imprimée en italique.

Vous pouvez également utiliser les mots-clés interface, annotation et enum

@startuml

abstract class AbstractList
abstract AbstractCollection
interface List

interface Collection

List <|-- AbstractlList
Collection <|-- AbstractCollection

Collection <|- List
AbstractCollection <|- AbstractList

§

Guide de référence du langage PlantUML (1.2025.0)

70 / 580

3.14 Masquer les attributs et les méthodes

3 DIAGRAMME DE CLASSES

Abstractlist <|-- ArrayList

class ArrayList {
Object[] elementData
size()

}

enum TimeUnit {
DAYS
HOURS
MINUTES

}

annotation SuppressWarnings

annotation Annotation {
annotation with members
String foo()
String bar()

}

@enduml

Collection List
©) 4 @

I

(@) AvstractColiection|_ _|(®) AbstractList

(®) Timeunit

DAYS

.SuppressWamings

HOURS

MINUTES

@ Annotation

annotation with members

(©) AmayList

Object]] elementData

size()

[Ref. ’Annotation with members’Issue#458]

String foo()
String bar()

3.14 Masquer les attributs et les méthodes

Vous pouvez paramétrer 'affichage des classes a 1’aide de la commande hide/show .

La commande de base est: hide empty members. Cette commande va masquer la zone des champs ou

des méthodes si celle-ci est vide.

A la place de empty members, vous pouvez utiliser:

o empty fields ou empty attributes pour des champs vides,

e empty methods pour des méthodes vides,

e fields or attributes qui masque les champs, méme s’il y en a de définis,

§

Guide de référence du langage PlantUML (1.2025.0)

71 / 580

3.15

Masquer les classes 3 DIAGRAMME DE CLASSES

methods qui masque les méthodes, méme s’il y en a de définies,
members qui masque les méthodes ou les champs, méme s’il y en a de définies,
circle pour le caractére entouré en face du nom de la classe,

stereotype pour le stéréotype.

Vous pouvez aussi fournir, juste apres le mot-clé hide ou show :

class pour toutes les classes,

interface pour toutes les interfaces,

enum pour tous les enums,

<<foo1>> pour les classes qui sont stéréotypée avec fool,

Un nom de classe existant

Vous pouvez utiliser plusieurs commandes show/hide pour définir des régles et des exceptions.

@startuml

class Dummyl {
+myMethods ()

}

class Dummy2 {
+hiddenMethod ()

3

class Dummy3 <<Serializable>> {
String name

}

hide members

hide <<Serializable>> circle
show Dummyl methods

show <<Serializable>> fields

Q@enduml

@ Dummy1 ’m|

o myMethods()

«Senalizables
Dummy3

String name

[Ref. [QA-2913](https://forum.plantuml.net /2913 /hiding-based-on-visibilty ?show=2916#a2916)]

3.15 Masquer les classes

Vous pouvez également utiliser les commandes show/hide pour masquer les classes.

Cela peut étre utile si vous définissez un grand fichier linclus, et si vous voulez masquer certaines classes
apres 'inclusion du fichier

@startuml

class Fool

§

Guide de référence du langage PlantUML (1.2025.0) 72 / 580

3.16 Supprimer des classes 3 DIAGRAMME DE CLASSES

class Foo2

Foo2 *x-- Fool

hide Foo2

@enduml

3.16 Supprimer des classes
Vous pouvez également utiliser les commandes remove pour supprimer des classes.

Cela peut étre utile si vous définissez un grand fichier linclus, et si vous voulez supprimer certaines classes
apres 'inclusion du fichier

@startuml

class Fool
class Foo2

Foo2 *-- Fool
remove Foo2

@enduml

(©)Foot

3.17 Hide, Remove or Restore tagged element or wildcard

You can put $tags (using $) on elements, then remove, hide or restore components either individually
or by tags.

By default, all components are displayed:

O@startuml

class Cl1 $tagl3
enum E1

interface I1 $tagl3
Cl1 —-1I1

@enduml

©c1| |@e

@

§

Guide de référence du langage PlantUML (1.2025.0) 73 / 580

3.17 Hide, Remove or Restore tagged element or wildcard

3 DIAGRAMME DE CLASSES

But you can:
e hide $tagl3 components:

O@startuml

class C1 $tagl3
enum E1

interface Il $tagl3
cl1 - 1I1

hide $tagl3
@enduml

e or remove $tagl3 components:

@startuml

class C1 $tagl3
enum E1

interface I1 $tagl3
Cl - I1

remove $tagl3
@enduml

® et

®E

e or remove $tagl3 and restore $tagl components:

O@startuml

class Cl1 $tagl3 $tagl
enum E1

interface I1 $tagl3
Cl - 1I1

remove $tagl3
restore $tagl
Q@enduml

e or remove * and restore $tagl components:

O@startuml

class Cl1 $tagl3 $tagl
enum E1

interface I1 $tagl3
Cl1 - 1I1

remove *
restore $tagl

§

©c1

® e

Guide de référence du langage PlantUML (1.2025.0)

74 / 580

3.18 Masquer ou supprimer une classe non liée 3 DIAGRAMME DE CLASSES

@enduml

©c

3.18 Masquer ou supprimer une classe non liée
Par défaut, toutes les classes sont affichées

@startuml
class C1
class C2
class C3
ClL -- C2
@enduml

Mais vous pouvez :
e hide @unlinked classes

@startuml
class C1
class C2
class C3
ClL -- C2

hide Qunlinked
@enduml

e ou remove Qunlinked classes

@startuml
class C1
class C2
class C3
ClL -- C2

remove Qunlinked
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 75 / 580

3.19 Utilisation de la généricité 3 DIAGRAMME DE CLASSES

[Adapté de QA-11052)

3.19 Utilisation de la généricité

Vous pouvez aussi utiliser les signes inférieur < et supérieur > pour définir I'utilisation de la généricité
dans une classe.

@startuml

class Foo<? extends Element> {
int size()

3

Foo *- Element

@enduml

........................ o [@soment

int size()

On peut désactiver ce comportement avec la commande skinparam genericDisplay old.

3.20 Caractere spécial
Normalement, un caractére (C, I, E ou A) est utilisé pour les classes, les interfaces ou les énum.

Vous pouvez aussi utiliser le caractére de votre choix, en définissant le stéréotype et en ajoutant une
couleur, comme par exemple :

O@startuml
class System << (S,#FF7700) Singleton >>

class Date << (D,orchid) >>
Q@enduml

«Singletons
System @ L

3.21 Packages

Vous pouvez définir un package en utilisant le mot-clé package, et optionnellement déclarer une couleur
de fond pour votre package (en utilisant un code couleur HTML ou son nom).

Notez que les définitions de packages peuvent étre imbriquées.
O@startuml
package "Classic Collections" #DDDDDD {

Object <|-- ArrayList
X

§

Guide de référence du langage PlantUML (1.2025.0) 76 / 580

3.22 Modéle de paquet 3 DIAGRAMME DE CLASSES

package net.sourceforge.plantuml {
Object <|-- Demol
Demol *- Demo2

3

@enduml

Classic Collections',

(© object

A
=\

gqyrcefurge\
thpunﬂ\
@ ArrayList @ Demo @ Demo2

3.22 Modéele de paquet
Il y a différents styles de paquets disponibles.

Vous pouvez les spécifier chacun par un réglage par défaut avec la commande : skinparam packageStyle,
ou par l'utilisation d’un stéréotype sur le paquet:

@startuml

scale 750 width

package fool <<Node>> {
class Classl

}

package foo2 <<Rectangle>> {
class Class2

}

package foo3 <<Folder>> {
class Class3

3

package food4 <<Frame>> {
class Class4

3

package foob <<Cloud>> {
class Classb

}
package foo6 <<Database>> {
class Class6

}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 77 / 580

3.23 Les espaces de nommage 3 DIAGRAMME DE CLASSES

—

foo2

foo1 foob

©Class‘| ©CI3552

foos
Class4 Class5 Class6
© © ©

Vous pouvez aussi définir les liens entre les paquets, comme dans I’exemple suivant :

@startuml
skinparam packageStyle rectangle

package fool.foo2 {
}

package fool.fo02.fo03 {
class Object

3

fool.foo2 +-- fool.foo02.fo03

@enduml

foo1

foo2

foo3

(© oblect|

3.23 Les espaces de nommage

Avec les packages, le nom de la classe est I'identifiant unique de la classe. Cela signifie qu’on ne peux pas
avoir deux classes avec le méme nom dans deux packages différents. Pour ce faire, vous devez utiliser des
espace de nommage (namespace) a la place des packages.

Vous pouvez faire référence a des classes d’autres espace de nommage en les nommant complétement.
Les classes de ’espace de nommage par défaut (racine) sont nommées en commengant par un point.

Il n’est pas obligatoire de créer les espaces de nom. Un classe avec son nom complet sera automatiquement
ajoutée au bon espace de nommage.

@startuml
class BaseClass
namespace net.dummy #DDDDDD {

.BaseClass <|-- Person
Meeting o-- Person

§

Guide de référence du langage PlantUML (1.2025.0) 78 / 580

3.24 Creation automatique d’espace de nommage 3 DIAGRAMME DE CLASSES

.BaseClass <|- Meeting

by
namespace net.foo {
net.dummy.Person <|- Person

.BaseClass <|-- Person

net.dummy.Meeting o-- Person

3

BaseClass <|-- net.unused.Person

@enduml

(:)Basecmss

/) [

©Person ©Meeting

A

(:)Pemon

There won’t be any difference between namespaces and packages anymore: both keywords are now
Synonymous.

3.24 Creation automatique d’espace de nommage

Vous pouvez définir une autre séparateur (autre que le point) en utilisant la commande : set namespaceSeparator
277

O@startuml
set namespaceSeparator ::
class X1::X2::foo {

some info

}

@enduml

(:)ioo

some info

§

Guide de référence du langage PlantUML (1.2025.0) 79 / 580

3.25 Interface boucle 3 DIAGRAMME DE CLASSES

Vous pouvez désactiver la création automatique de package en utilisant la commande set namespaceSeparator
none.

@startuml

set namespaceSeparator none
class X1.X2.foo {
some info

3

@enduml

(©)x1.x2.foo

some info

3.25 Interface boucle

Vous pouvez aussi rajouter des interfaces sur les classes avec la syntaxe suivante:
e bar ()- foo
e bar ()-- foo
e foo -() bar

O@startuml
class foo
bar (O- foo
@enduml
o (@
bar |]
3.26 Changer la direction
Par défaut, les liens entre les classe ont deux tirets —— et sont orientés verticalement. Il est possible

d’utiliser une ligne horizontal en mettant un simple tiret (Ou un point) comme ceci:

@startuml

Room o- Student
Room *-- Chair
Q@enduml

©oar

Vous pouvez aussi changer le sens en renversant le lien :

@startuml
Student -o Room
Chair --* Room
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 80 / 580

3.26 Changer la direction 3 DIAGRAMME DE CLASSES

Student Room
©stugent,_,©

Il est aussi possible de changer la direction d’une fleche en ajoutant les mots clés left, right, up ou down
a l'intérieur de la fleche:

O@startuml

foo -left-> dummyLeft
foo -right-> dummyRight
foo -up-> dummyUp

foo —-down-> dummyDown
@enduml

©aummyLett . (@)oo, (C)dummyRight

11 est possible de raccourcir la fleche en n’utilisant que la premiere lettre de la direction (par exemple,
-d- au lieu de -down-) ou les deux premiéres lettres (-do-)

Attention & ne pas abuser de cette fonctionnalité : GraphViz donne généralement de bons résultats sans
trop de raffistolages.

Et avec le parametre left to right direction:

@startuml

left to right direction
foo -left-> dummyLeft
foo -right-> dummyRight
foo -up-> dummyUp

foo -down-> dummyDown
@enduml

@dummyUp < @foo > @dummyDown

(©) dummyRight

§

Guide de référence du langage PlantUML (1.2025.0) 81 / 580

3.27 Classes d’association 3 DIAGRAMME DE CLASSES

3.27 Classes d’association

Vous pouvez définir une classe d’association apres qu'une relation ait été définie entre deux classes, comme
dans ’exemple suivant:

@startuml
class Student {
Name
}
Student "O..x" - "1..%" Course
(Student, Course) .. Enrollment

class Enrollment {
drop()
cancel ()

3

@enduml

(©)student| , . . © course

Name

1
[
[
[
[
[

©Enm|lment

dropl()
_canceﬁ)

Vous pouvez la définir dans une autre direction :

@startuml
class Student {
Name
}
Student "O..x" -- "1..x" Course

(Student, Course) . Enrollment

class Enrollment {
drop()
cancel ()

}

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 82 / 580

3.28 Association sur la méme classe 3 DIAGRAMME DE CLASSES

(©) student

Name

(©) Enroliment

drop()
cancel()
1“i
@Course
3.28 Association sur la méme classe
@startuml
class Station {
+name: string
}
class StationCrossing {
+cost: TimeInterval
}
<> diamond
StationCrossing . diamond
diamond - "from O..*" Station
diamond - "to O0..* " Station
@enduml
to 0.*
() stationCrossing (©) station
o cost: Timelnterval _<>£: o name: string
] fromQ T

[Réf. Incubation : Associations]

3.29 Personnalisation
La commande skinparam permet de changer la couleur et les polices de caracteres.
Vous pouvez utiliser cette commande :
e Dans le diagramme, comme toutes les autre commandes,
¢ Dans un fichier inclus,
e Dans un fichier de configuration précisé par la ligne de commande ou la tdche ANT.
O@startuml
skinparam class {
BackgroundColor PaleGreen

ArrowColor SeaGreen
BorderColor SpringGreen

}

§

Guide de référence du langage PlantUML (1.2025.0) 83 / 580

3.30 Stéréotypes Personnalisés 3 DIAGRAMME DE CLASSES

skinparam stereotypeCBackgroundColor YellowGreen
Class01 "1" *-- "many" Class02 : contains
Class03 o—- Class04 : aggregation

@enduml

(©)classo1 (C)Class03

1
contains aggregation

many

(©classp2 (C)Class04

3.30 Stéréotypes Personnalisés
Vous pouvez définir des couleurs et des fontes de caractéres spécifiques pour les classes stéréotypées.

@startuml

skinparam class {

BackgroundColor PaleGreen

ArrowColor SeaGreen

BorderColor SpringGreen

BackgroundColor<<Foo>> Wheat

BorderColor<<Foo>> Tomato

b

skinparam stereotypeCBackgroundColor YellowGreen
skinparam stereotypeCBackgroundColor<< Foo >> DimGray

Class01 <<Foo>>
Class03 <<Foo>>

Class01 "1" *-- "many" ClassO02 : contains

Class03 o-- Class04 : aggregation

Q@enduml
w«Foa» w«Foa»
Class01 Class03
1
|oc-ntain5 aggregation
many|
/L\. Falin
ClassD2 ClassD4

¢

Any of the spaces shown as ‘¢ below will cause all skinparams to be ignored, see [discord discus-
sion] (https://discord.com/channels/1083727021328306236,/1289954399321329755/1289967399302467614)
and [issue #1932](https://github.com/plantuml/plantuml/issues/1932):

§

Guide de référence du langage PlantUML (1.2025.0) 84 / 580

3.31 Dégradé de couleurs 3 DIAGRAMME DE CLASSES

¢ ‘BackgroundColor_ «Foo» Wheat'

¢ ‘skinparam stereotypeCBackgroundColor_«Foo» DimGray*

3.31 Dégradé de couleurs
Vous pouvez déclarer des couleurs individuelles pour les classes, les notes, etc. en utilisant la notation #.

Vous pouvez utiliser des noms de couleurs standard ou des codes RVB dans diverses notations, voir
Couleurs.

Vous pouvez également utiliser le dégradé de couleurs pour les couleurs de fond, avec la syntaxe suivante
: deux noms de couleurs séparés soit par :

o |,

o/,

e \,0u
selon la direction du gradient.
Par exemple
@startuml

skinparam backgroundcolor AntiqueWhite/Gold
skinparam classBackgroundColor Wheat|CornflowerBlue

class Foo #red-green

note left of Foo #blue\9932CC
this is my
note on this class

end note

package example #GreenYellow/LightGoldenRodYellow {
class Dummy

3

Q@enduml

3.32 Aide pour la mise en page

Sometimes, the default layout is not perfect...

You can use together keyword to group some classes together : the layout engine will try to group them
(as if they were in the same package).

You can also use hidden links to force the layout.

@startuml

class Barl
class Bar2
together {
class Togetherl
class Together2

§

Guide de référence du langage PlantUML (1.2025.0) 85 / 580

3.33 Découper les grands diagrammes 3 DIAGRAMME DE CLASSES

class Together3
by
Togetherl - Together2
Together2 - Together3
Together2 -[hidden]--> Barl
Barl -[hidden]> Bar2

@enduml

©Together1 @TogetherE ©Together3

(©Bar1, |(©)Bar2

3.33 Découper les grands diagrammes

Parfois, vous obtiendrez des images de taille importante.

Vous pouvez utiliser la commande page (hpages)x(vpages) pour découper I'image en plusieurs fichiers:
hpages est le nombre de pages horizontales et vpages indique le nombre de pages verticales.

Vous pouvez aussi utiliser des parametres spécifiques pour rajouter des bords sur les pages découpées
(voir exemple).

@startuml

' Split into 4 pages

page 2x2

skinparam pageMargin 10
skinparam pageExternalColor gray
skinparam pageBorderColor black

class BaseClass

namespace net.dummy #DDDDDD {
.BaseClass <|-- Person
Meeting o-- Person
.BaseClass <|- Meeting

¥

namespace net.foo {
net.dummy.Person <|- Person
.BaseClass <|-- Person

net.dummy.Meeting o-- Person

3

BaseClass <|-- net.unused.Person
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 86 / 580

3.34 Extension et implementation [extends, implements] 3 DIAGRAMME DE CLASSES

© BaseClass

unused / dummy /

— | Y

ﬁ © Person © Meeting

A

©Person

3.34 Extension et implementation [extends, implements]
Il est aussi possible d’utiliser directement les mots clés extends and implements.

O@startuml

class ArrayList implements List
class ArrayList extends Abstractlist
@enduml

@)Listf |(C)AbstractList
&

A
Ay

%
@ ArrayList

[Ref. QA-2239]

3.35 Relations entre crochets (liens ou fleches) style
3.35.1 Style de ligne

Il est également possible d’avoir explicitement des relations, des liens ou des fleches bold, dashed, dotted,
hidden ou plain:

e sans étiquette

@startuml

title Bracketed line style without label
class foo

class bar

barl : [bold]

bar2 : [dashed]

bar3 : [dotted]

bar4 : [hidden]

bar5 : [plain]

foo --> bar
foo -[bold]-> baril

§

Guide de référence du langage PlantUML (1.2025.0) 87 / 580

3.35 Relations entre crochets (liens ou fléches) style 3 DIAGRAMME DE CLASSES

foo -[dashed]-> bar2
foo -[dotted]-> bar3
foo -[hidden]-> bar4
foo -[plain]-> bar5b

Q@enduml

Bracketed line style without label

(©) oo

AR

@ par (©)bar ©baz| |(©pva3| |(©)bars

[bold] [dashed] [dotted] [hidden] [plain]

e avec étiquette

@startuml

title Bracketed line style with label
class foo

class bar

barl : [bold]

bar2 : [dashed]

bar3 : [dotted]

bar4 : [hidden]

bar5 : [plain]

foo --> bar :

foo -[bold]-> bari : [bold]
foo —-[dashed]-> bar2 : [dashed]
foo —[dotted]-> bar3 : [dotted]
foo -[hidden]-> bar4 : [hidden]
foo -[plain]-> bar5 : [plain]

@enduml

Bracketed line style with label

(©) oo

! "
[bold] /[dashed] “[dotted]
!

v y
@ par (©)bar ©baz| |(©pva3| |[(©ba4| [(©)bars

[bold] [dashed] [dotted] [hidden] [plain]

[Adapté de QA-4181]

3.35.2 Couleur de ligne

@startuml
title Bracketed line color
class foo
class bar

§

Guide de référence du langage PlantUML (1.2025.0) 88 / 580

3.35 Relations entre crochets (liens ou fléches) style

3 DIAGRAMME DE CLASSES

barl :
bar2 :
bar3 :

foo
foo
foo
foo

[#red]
[#green]
[#blue]

--> bar

- [#red]-> baril
-[#green]-> bar2
- [#blue]-> bar3

[#red]
[#green]
[#blue]

'foo -[#blue;#yellow;#green]-> bar4d
@enduml

3.35

Q@sta

(:)bar

Bracketed line color

[itred] \[green] “\[#blue]
/ \
v N
(©)bart ©par2, |[(©)bars
[#red] [green] [#blue]

.3 Epaisseur de ligne

rtuml

title Bracketed line thickness

clas
clas

barl :
bar2 :
bar3d :
bar4d :
barb :

foo
foo
foo
foo
foo
foo

s foo

s bar

[thickness=1]
[thickness=2]
[thickness=4]
[thickness=8]
[thickness=16]

-=> bar

- [thickness=1]-> barl
-[thickness=2]-> bar2
-[thickness=4]-> bar3
-[thickness=8]-> bar4

-[thickness=16]-> barb

@enduml

(1]
[2]
(4]
(8l

[16]

Bracketed line thickness

(©)ber (©) bar1 (©) bar2 (©) bars (©) bars
[thickness=1] [thickness=2] [thickness=4] [thickness=8] [thickness=16]
[Réf. QA-4949)
¢
Guide de référence du langage PlantUML (1.2025.0) 89 / 580

3.36 Modifier la couleur et le style d’une relation (lien ou fléche) (style eDIRGHAMME DE CLASSES

3.35.4

Mélange

@startuml
title Bracketed line style mix
class foo

class bar

barl

bar2 :
bar3 :
bar4d :
barb
foo -—>
foo
foo
foo
foo
foo
@enduml

©bar

[#red,thickness=1]
[#red,dashed,thickness=2]
[#green,dashed,thickness=4]
[#blue,dotted,thickness=8]
[#blue,plain,thickness=16]

bar

- [#red,thickness=1]-> barl
-[#red,dashed,thickness=2]-> bar2

- [#green,dashed, thickness=4]-> bar3 :
- [#blue,dotted,thickness=8]-> bard
-[#blue,plain,thickness=16]-> barb

[#red, 1]
[#red,dashed, 2]
[#green,dashed,4]
[blue,dotted, 8]
[blue,plain, 16]

Bracketed line style mix

//’ ’
[

- ’

y - L

Mgy,
)
. ”””fu”“

- * i)
" [#red1] ,[#red dashed,2] +[#green,dashed,4] ”"ff:;,,;fblue__dotted.
ol LY

|

(©) bart © var2

© bar3

/.l’”
o
iy,

(©) bars

(©) bars

[#red thickness=1] [#red,dashed, thickness=2]

[green,dashed thickness=4]

[blue,dotted, thickness=8]

[blue,plain thickness=16]

3.36 Modifier la couleur et le style d’une relation (lien ou fleche) (style en

ligne)

Vous pouvez modifier la couleur ou le style d’une relation ou d’une fleche individuelle en utilisant la
notation suivante en ligne

e #color;line.[bold|dashed|dotted] ;text:color

@startuml

class foo

foo --> bar : normal

foo —--> barl #line:red;line.bold;text:red

foo —-—>
foo -->
@enduml

bar2 #green;line.dashed;text:green :

bar3 #blue;line.dotted;text:blue

: red bold
green dashed
: blue dotted

(:)bo)

—_

,

[-

normal [red bold '@neendashed'"-MUedﬁﬂed

A\

(©bar, |(©)bart

[Voir une fonctionnalité similaire sur le déploiement]

§

Guide de référence du langage PlantUML (1.2025.0)

y 4
(©)bar (©)barz

90 / 580

3.37 Modifier la couleur et le style d’une classe (style en ligne) 3 DIAGRAMME DE CLASSES

3.37 Modifier la couleur et le style d’une classe (style en ligne)

Vous pouvez modifier la couleur ou le style d’une classe individuelle en utilisant les deux notations
suivantes

e #color ##[stylelcolor
Avec la couleur de fond d’abord (#color), puis le style de ligne et la couleur de ligne (##[stylelcolor)

@startuml
abstract abstract
annotation annotation #pink ##[bold]red

class class #palegreen ##[dashed]green
interface interface #aliceblue ##[dotted]lblue
Q@enduml

(®)abstract| |(@ annotation

:©class: @fm‘e;face;

[Réf. QA-1487]
e #[colorlback:color];header:color;line:color;line.[bold|dashed|dotted];text:color

@startuml
abstract abstract
annotation annotation #pink;line:red;line.bold;text:red

class class #palegreen;line:green;line.dashed;text:green
interface interface #aliceblue;line:blue;line.dotted;text:blue
@enduml

@absﬂrac! . annotation

i class! i@fﬂferfacei
- . |
- ;

Premier exemple original

@startuml
class bar #line:green;back:lightblue
class bar2 #lightblue;line:green

class Fool #back:red;line:O00FFFF

class FooDashed #line.dashed:blue

class FooDotted #line.dotted:blue

class FooBold #line.bold

class Demol #back:lightgreen|yellow;header:blue/red
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 91 / 580

3.38 Fléches de/vers les membres de la classe

3 DIAGRAMME DE CLASSES

[Réf. QA-8770)

3.38 Fléches de/vers les membres de la classe

@startuml
class Foo {
+ fieldl

+ field2

3

class Bar {
+ field3

+ field4

}

Foo::fieldl --> Bar::field3 : foo
Foo::field2 —--> Bar::field4 : bar
@enduml

(©)Feo

o field1
o field2

(©) Bar
o field3
o fieldd

Ref. QA-3636]

@startuml
left to right direction

class User {
id : INTEGER

other_id : INTEGER
}

class Email {

§

Guide de référence du langage PlantUML (1.2025.0)

92 / 580

3.39 Regroupement de fleche d’héritage 3 DIAGRAMME DE CLASSES

id : INTEGER

user_id : INTEGER
address : INTEGER
}

User::id *-- Email::user_id
Q@enduml

(© Emai
@ User id : INTEGER

id : INTEGER *—— user_id : INTEGER
other id : INTEGER address : INTEGER

[Réf. QA-5261]

3.39 Regroupement de fleche d’héritage

Vous pouvez fusionner toutes les tétes de fleche a l'aide de la fonction skinparam groupInheritance,
avec un seuil comme parametre.

3.39.1 Grouplnheritance 1 (pas de regroupement)

O@startuml
skinparam groupInheritance 1

Al <|-- Bl
A2 <|-- B2
A2 <|-- C2
A3 <|-- B3
A3 <|-- C3
A3 <|-- D3
A4 <|-- B4
AL <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

@© a1 ©a2 ©a3 ©) a4

& o b o g

c2l (©s p3| [©B4 |©c4 |(©p4

@ ©
3.39.2 Grouplnheritance 2 (regroupement a partir de 2)

O@startuml
skinparam groupInheritance 2

Al <|-- B1

§

Guide de référence du langage PlantUML (1.2025.0) 93 / 580

3.39 Regroupement de fleche d’héritage 3 DIAGRAMME DE CLASSES

A2 <|-- B2
A2 <|-- C2
A3 <|-- B3
A3 <|-- C3
A3 <|-- D3
A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
Q@enduml

© a1 (©a2 ©a3 ©) a4

[A

©s1| |@©82] |(©cz |©83 (©c3 |[©p3 |©84 |©c4 |©Dp4

3.39.3 GrouplInheritance 3 (regroupement uniquement a partir de 3)

@startuml
skinparam groupInheritance 3

Al <|-- B1
A2 <|-- B2
A2 <|-- C2
A3 <|-- B3
A3 <|-- C3
A3 <|-- D3
A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

@© a1 ©a2 (©a3 ©) a4

IRAN

©s1| |@©82] |(©cz |©e83 (©c3 |[©p3 |©84 |©c4 |©D4

3.39.4 GrouplInheritance 4 (regroupement uniquement a partir de 4)

@startuml
skinparam grouplInheritance 4

3

Guide de référence du langage PlantUML (1.2025.0) 94 / 580

3.40 Display JSON Data on Class or Object diagram 3 DIAGRAMME DE CLASSES

Al <|-- B1
A2 <|-- B2
A2 <|-- C2
A3 <|-- B3
A3 <|-- C3
A3 <|-- D3
A4 <|-- B4
A4 <|-- C4
A4 <|-- D4
A4 <|-- E4
@enduml

(©)a1 ©as ©n4

T/ /TN

©s1| |(©82] |(©c2 |(©ss3 ©po3| |[©B4] |©c4 (©D4

[Réf. QA-3193, et Défaut QA-13532)

3.40 Display JSON Data on Class or Object diagram
3.40.1 Simple example

O@startuml
class Class
object Object
json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}

@enduml

(©)Class ‘ Object

JSON
fruit |Apple
size |Large
color | Red
Green

[Ref. QA-15/81]

For another example, see on JSON page.

§

Guide de référence du langage PlantUML (1.2025.0) 95 / 580

3.41 Packages and Namespaces Enhancement 3 DIAGRAMME DE CLASSES

3.41 Packages and Namespaces Enhancement
[From V1.2023.2+, and V1.2023.5]

@startuml
class A.B.C.D.Z {
}

@enduml

O@startuml

set separator none
class A.B.C.D.Z {
by

@enduml

(©AaBcDZ

O@startuml

!pragma useIntermediatePackages false
class A.B.C.D.Z {

¥

Q@enduml

@startuml
set separator none
package A.B.C.D {
class Z {
b
¥

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 96 / 580

3.42 Qualified associations 3 DIAGRAMME DE CLASSES

[Ref. GH-1352]

3.42 Qualified associations
3.42.1 Minimal example

@startuml
class classi
class class2

classl [Qualifier] - class2
@enduml

(©)class1 (©)class2
Qual ifier'———

[Ref. QA-16397, GH-1/67]

3.42.2 Another example

@startuml
interface Map<K,V>
class HashMap<Long,Customer>

Map <|.. HashMap

Shop [customerId: long] ---> "customer\nl" Customer
HashMap [id: Long] -r-> "value" Customer
@enduml

(© shop
customerld: long

| customer
i 1

, Y
iLong, Custameri
HashMap I Customer
id: Long "

3.43 Change diagram orientation
You can change (whole) diagram orientation with:
e top to bottom direction (by default)

e left to right direction

3.43.1 Top to bottom (by default)
3.43.2 With Graphviz (layout engine by default)
The main rule is: Nested element first, then simple element.

@startuml
class a
class b

§

Guide de référence du langage PlantUML (1.2025.0) 97 / 580

3.43 Change diagram orientation

3 DIAGRAMME DE CLASSES

package A {
class al
class a2
class a3
class a4
class ab
package sub_a {
class sal
class sa2
class sa3
}
}

package B {
class bl
class b2
class b3
class b4
class bb
package sub_b {
class sbl
class sb2
class sb3
¥
}

@enduml

A B\

sub_al,

sub_b',

©a1] |(©a2] |©a3 | |(©sat| |©sa2 ©p1, (©rp2| |©b3

(©)sb1

©a4| |(©as ©)sa3 ©p4 (©ps

(©)sb3

3.43.3 With Smetana (internal layout engine)
The main rule is the opposite: Simple element first, then nested element.

@startuml
!pragma layout smetana
class a
class b
package A {
class al
class a2
class a3
class a4
class ab
package sub_a {
class sal
class sa2
class sa3

}

§

Guide de référence du langage PlantUML (1.2025.0)

98 / 580

3.43 Change diagram orientation

3 DIAGRAMME DE CLASSES

package B {
class bl
class b2
class b3
class b4
class bb
package sub_b {
class sbl
class sb2
class sb3
¥
}

Q@enduml

sub_a\

©)b3

©sv1| |(©)sb2

(©a4| |([©as (©)sa3

3.43.4 Left to right
3.43.5 With Graphviz (layout engine by default)

@startuml
left to right direction
class a
class b
package A {
class al
class a2
class a3
class a4
class ab
package sub_a {
class sal
class sa2
class sa3
}
}

package B {

class bl

class b2

class b3

class b4

class bb

package sub_b {
class sbl
class sb2
class sb3

§

Guide de référence du langage PlantUML (1.2025.0)

99 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 100 / 580

3.43 Change diagram orientation 3 DIAGRAMME DE CLASSES

sub_b}\

(©)sb1 (©)sb3

sub_a\,

(©)sat (©)sa3

¢
& Guide de référence du langage PlantUML (1.2025.0) 101 / 580

3.43 Change diagram orientation

3 DIAGRAMME DE CLASSES

3.43.6 With Smetana (internal layout engine)

@startuml
!pragma layout smetana
left to right direction
class a
class b
package A {
class al
class a2
class a3
class a4
class ab
package sub_a {
class sal
class sa2
class sa3
}
}

package B {
class bl
class b2
class b3
class b4
class bb
package sub_b {
class sbl
class sb2
class sb3
}
}

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

102 / 580

3.43 Change diagram orientation

3 DIAGRAMME DE CLASSES

3

sub_b}\

(©)sb2

(©)sb

L9 12

© b1

®

|

sub_a\,

(©)sa2

©@

—

sa

© a3

9]

©)a5

19

e)||®

©a

Guide de référence du langage PlantUML (1.2025.0)

103 / 580

4 DIAGRAMME D’OBJETS

4 Diagramme d’objets

Un diagramme d’objets est une représentation graphique qui met en évidence les objets et leurs
relations a un moment précis. Il fournit un instantané de la structure du systéme, capturant la vue
statique des instances présentes et de leurs associations.

PlantUML offre un moyen simple et intuitif de créer des diagrammes d’objets en utilisant du texte sim-
ple. Sa syntaxe conviviale permet de créer rapidement des diagrammes sans avoir recours a des outils GUI
complexes. En outre, le forum PlantUML offre aux utilisateurs une plateforme pour discuter, partager
et demander de 'aide, favorisant ainsi une communauté de collaboration. En choisissant PlantUML, les
utilisateurs bénéficient a la fois de l'efficacité des diagrammes basés sur le markdown et du soutien d’une
communauté active.

4.1 Définition des objets

Les instances d’objets sont défnies avec le mot clé object.

@startuml

object firstObject

object "My Second Object" as o2
@enduml

| firstObject | | My Second Object |
| |

4.2 Relations entre les objets

Les relations entre objets sont définies a ’aide des symboles suivants :

Type Symbole | Objectif

Extension <|-- Spécialisation d’une classe dans une hiérarchie
Implémentation | <[.. Réalisation d’une interface par une classe
Composition *—= La partie ne peut exister sans le tout
Agrégation o-- La partie peut exister indépendamment du tout
Dépendance -=> L’objet utilise un autre objet

Dépendance L Une forme plus faible de dépendance

Il est possible de remplacer —-- par .. pour avoir des pointillés.

Grace a ces regles, on peut avoir les dessins suivants:

Il est possible d’ajouter une étiquette sur la relation, en utilisant : suivi par le texte de I’étiquette.
Pour les cardinalités, vous pouvez utiliser les doubles quotes "" sur chaque c6té de la relation.

@startuml

object ObjectO1
object Object02
object Object03
object Object04
object Object05
object Object06
object Object07
object Object08

Object01 <|-- Object02

Object03 *-- Object04

Object05 o-- "4" Object06
ObjectO7 .. Object08 : some labels
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 104 / 580

4.3 Association d’objects

4 DIAGRAMME D’OBJETS

| Object0t | | Objecto3 | | Objectds | | Objecto7 |
| | |
+ I
|
%omembds

4 I
|

| Object06 | | Objectos |

| Objectn2 | | Objecto4 |
I | |

4.3 Association d’objects

@startuml
object ol
object 02
diamond dia
object o3

ol --> dia
02 --> dia
dia --> 03
Q@enduml

4.4 Ajout de champs

Pour déclarer un champ, vous pouvez utiliser le symbole : suivi par le nom du champs.

@startuml
object user

user : name = "Dummy"
user : id = 123

@enduml

user

name = "Dummy"
id=123

It is also possible to ground between brackets {} all fields.

O@startuml
object user {

name = "Dummy"
id = 123

§

Guide de référence du langage PlantUML (1.2025.0) 105 / 580

4.5 Caractéristiques communes avec les diagrammes de classes 4 DIAGRAMME D’OBJETS

@enduml

name = "Dummy"
id =123

4.5 Caractéristiques communes avec les diagrammes de classes
o Visibilité
e Ajout de notes
o Utilisation de packages

o Personnalisation de l'affichage

4.6 Table de correspondance ou tableau associatif

Vous pouvez définir une table de correspondance ou un tableau associatif, avec le mot clé map et le
séparateur =>

@startuml

map CapitalCity {
UK => London

USA => Washington
Germany => Berlin

}
Q@enduml
CapitalCity
UK London
USA | Washington
Gemany | Berlin
@startuml

map "Map **Contry => CapitalCity**" as CC {
UK => London

USA => Washington

Germany => Berlin

}
@enduml
Map Contry == CapitalCity
UK London
USA | Washington
Gemany | Berlin
@startuml
map "map: Map<Integer, String>" as users {
1 => Alice
2 => Bob
3 => Charlie
}
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 106 / 580

4.6 Table de correspondance ou tableau associatif

4 DIAGRAMME D’OBJETS

Et ajouter un lien avec un objet

@startuml
object London

map CapitalCity {
UK *-> London

USA => Washington
Germany => Berlin
I

@enduml

@startuml

object London
object Washington
object Berlin
object NewYork

map CapitalCity {

UK *-> London

USA *--> Washington
Germany *---> Berlin

}

NewYork --> CapitalCity::USA
@enduml

[Réf. n° 307

§

map: Map<Integer, String>

1

Alice

2

Bob

3

Charlie

CapitalCity

USA

Washington

Germany | Berlin

‘ NewYork ‘

CapitalCity
UK
USA
Germany

London

Washington

=

Guide de référence du langage PlantUML (1.2025.0)

107 / 580

4.7 Program (or project) evaluation and review technique (PERT) with4naPIAGRAMME D’OBJETS

4.7 Program (or project) evaluation and review technique (PERT) with map

You can use map table in order to make Program (or project) evaluation and review technique (PERT)
diagram.

O@startuml PERT

left to right direction

' Horizontal lines: -->, <--, <-->
' Vertical lines: —>, <-, <->
title PERT: Project Name

map Kick.0ff {

}

map task.1l {
Start => End

¥

map task.2 {
Start => End

}

map task.3 {
Start => End

}

map task.4 {
Start => End

}

map task.5 {

Start => End
}
Kick.0ff --> task.l1 : Label 1
Kick.0ff --> task.2 : Label 2
Kick.0ff --> task.3 : Label 3
task.1 —--> task.4
task.2 --> task.4
task.3 --> task.4
task.4 --> task.5 : Label 4
Q@enduml

PERT: Project Name

task4 | Labeld

| Start| End |

.| task5 |
~ |start| End |

i
o

[Ref. QA-12337]

§

Guide de référence du langage PlantUML (1.2025.0) 108 / 580

4.8 Display JSON Data on Class or Object diagram

4 DIAGRAMME D’OBJETS

4.8 Display JSON Data on Class or Object diagram

4.8.1 Simple example

O@startuml
class Class
object Object
json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}

Q@enduml

(:)(Hass

JSON
fruit |Apple

Large
Red

Green |

size

color

[Ref. QA-15/81]

For another example, see on JSON page.

§

‘ Object

Guide de référence du langage PlantUML (1.2025.0)

109 / 580

5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

5 Diagrammes d’activité (ancienne syntaxe)

Il s’agit de l'ancienne syntaxe du diagramme d’activités, pour voir la nouvelle version actuelle, voir:
Diagrammes d’activité (nouvelle syntaxe).

5.1 Action simple
Vous pouvez utiliser (*) pour le point de départ et le point d’arrivée de le diagramme d’activité.

Dans certaines occasions, vous pouvez utiliser (*top) pour forcer le point de départ a étre en haut du
diagramme.

Utilisez -=> pour les fleches
@startuml

(%) --> "First Action"
"First Action" --> (%)

@enduml

e Y
| First Action |
W y,

5.2 Texte sur les fleches
Par défaut, une fleche commence a partir de la derniere activité définie.

Vous pouvez rajouter un libellé sur une fleche en mettant des crochets [et] juste apres la définition de
la fleche.

@startuml

(*) --> "First Action"
-->[You can put also labels] "Second Action"
-=> (%)

Q@enduml

I - ™y
| First Action |
\)

You can put also labels

Y

F-

|. Second Action |
\ Y,

§

Guide de référence du langage PlantUML (1.2025.0) 110 / 580

5.3 Changer la direction des fléches 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

5.3 Changer la direction des fleches

Vous pouvez utiliser => pour les fleches horizontales. Il est aussi possible de forcer la direction d’une
fleche en utilisant la syntaxe suivante :

e —down-> (default arrow)

e -right->or —>

o —left-—>
e -up—>
@startuml

(*) -up-> "First Action"
-right-> "Second Action"
--> "Third Action"
-left-> (%)

@enduml

-

|. First Action \I—)'|f Second Action |
y PN J

(@< Third Action |
)

“

5.4 Branches

Vous pouvez utiliser le mot clé if/then/else pour définir une branche.

@startuml
(¥) —=> "Initialization"

if "Some Test" then
-->[true] "Some Action"
—-=> "Another Action"
-right-> (%)

else
->[false] "Something else"
-->[Ending process] (*)

endif

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 111 / 580

5.5 Encore des branches 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

./- -\.
| Initialization

Some Test

|,- -\u
true | Something else |

e N
| Some Action | Ending process
\)

==

| Anther Action |

Malheureusement, vous devez parfois avoir a répéter la méme activité dans le diagramme de texte.

@startuml

(¥) --> "check input"

If "input is verbose" then
--> [Yes] "turn on verbosity"
--> "run command"

else

--> "run command"

Endif

—=> (%)

@enduml

|,- b "
|. check input |

-

input is werbose

turn on verbosity |

e ™
run command |
! Y,

5.5 Encore des branches

Par défaut, une branche commence & la derniére activité définie, mais il est possible de passer outre et
de définir un lien avec le mot clé if.

Il est aussi possible d’imbriquer les branches.
O@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 112 / 580

5.6 Synchronisation 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

(x) —--> if "Some Test" then
-=>[true] "activity 1"

if "" then
-> "activity 3" as a3
else
if "Other test" then
-left-> "activity 5"
else
--> "activity 6"
endif
endif

else
->[false] "activity 2"
endif
a3 --> if "last test" then
--> "activity 7"
else
-> "activity 8"

endif

@enduml

Some Test ’
false_ [~ R
——>{ activity 2 |
b
. S
| activity1 |
actwrtyS |
Othdatdttst
| actwrtyS actwrtyB |
| actwrtye | | actwrty?' |
5.6 Synchronisation
Vous pouvez utiliser la syntaxe === code === pour afficher des barres de synchronisation.

@startuml

(*) —=> ===B]===
--> "Parallel Activity 1"

§

Guide de référence du langage PlantUML (1.2025.0) 113 / 580

5.7 Description détaillée 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

===Bl=== --> "Parallel Activity 2"

-=> (%)

@enduml

[Parallel Activity 1 | | Parallel Activity 2 |
._)L)

5.7 Description détaillée

Lorsque vous déclarez des activités, vous pouvez positionner sur plusieurs lignes le texte de description
Vous pouvez également ajouter \n dans la description. Il est également possible d’utiliser quelques tags
HTML tels que :

Vous pouvez aussi donner un court code a l'activité avec le mot clé as. Ce code peut étre utilisé plus
tard dans le diagramme de description.

@startuml

(%) -left-> "this <size:20>activity</size>
is very <color:red>long2</color>
and defined on several lines

that contains many <i>text</i>" as Al

-up—-> "Another activity\n on several lines"

Al --> "Short activity <img:sourceforge.jpg>"
@enduml

Another activity
on several lines
. J

- .

this activity
is very long2
and defined on several lines

| that contains many text
h

Y

Short activity (Cannot deccde)

-~

§

Guide de référence du langage PlantUML (1.2025.0) 114 / 580

5.8 Notes 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

5.8 Notes

Vous pouvez rajouter des notes sur une activités en utilisant les commandes: note left, note right,
note top ou note bottom, juste apres la définition de lactivité concernée.

Si vous voulez mettre une note sur le démarrage du diagramme, définissez la note au tout début du
diagramme.

Vous pouvez aussi avoir une note sur plusieurs lignes, en utilisant les mots clés endnote.

@startuml

(*) --> "Some Activity"
note right: This activity has to be defined
"Some Activity" --> (%)
note left

This note is on

several lines

end note

@enduml

| some Activity }=::] This activity has to be defined B]
R A

This note is on %
several lines)

5.9 Partition

Vous pouvez définir une partition en utilisant le mot clé partition, et optionnellement déclarer un fond
de couleur pour votre partition (En utilisant un code couleur html ou un nom)

Quand vous déclarez les activités, ils sont automatiquement mis dans la derniére partition utilisée.
Vous pouvez fermer la partition de définition en utilisant les crochets fermants }.
O@startuml

partition Conductor {
(¥*) --> "Climbs on Platform"

-=> === 8] ===
-—> Bows
3
partition Audience #LightSkyBlue {
=== 31 === --> Applauds
X
partition Conductor {
Bows --> === §2 ===
--> WavesArmes
Applauds --> === S2 ===
X

partition Orchestra #CCCCEE {
WavesArmes --> Introduction
--> "Play music"

§

Guide de référence du langage PlantUML (1.2025.0) 115 / 580

5.10 Paramétre de théme

5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

@enduml

Cunductur\

| Climbs on Platfarm |

T

|r Bows |

T

- -
|r WavesArmes |
\ p,

Audience \

|. Applauds

Orchestfa \
7

| Introduction
.

5.10 Parameétre de théme

Vous pouvez utiliser la commande skinparam pour changer la couleur et la police d’écriture pour dessiner.

Vous pouvez utiliser cette commande :

e Dans le diagramme de définition, comme n’importe quelle autre commande,
e Dans un fichier inclus,
¢ Dans un fichier de configuration, a l’aide de la la ligne de commande ou la tdche ANT.

Vous pouvez spécifier une couleur et une police d’écriture dans les stéréotypes d’activités.

@startuml

skinparam backgroundColor #AAFFFF

skinparam activity {
StartColor red
BarColor SaddleBrown
EndColor Silver
BackgroundColor Peru

BackgroundColor<< Begin >> 0Olive

BorderColor Peru
FontName Impact

§

Guide de référence du langage PlantUML (1.2025.0)

116 / 580

5.11 Octogone 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

(*) --> "Climbs on Platform" << Begin >>

:
-

Vous pouvez changer la forme des activités en octogone en utilisant la commande skinparam activityShape
octagon.

--> WavesArmes
-=> (%)

@enduml

5.11 Octogone

@startuml
'Default is skinparam activityShape roundBox
skinparam activityShape octagon

(*¥) --> "First Activity"
"First Activity" --> (%)

@enduml

®

5.12 Exemple complet

@startuml
title Servlet Container

(*) --> "ClickServlet.handleRequest()"

§

Guide de référence du langage PlantUML (1.2025.0) 117 / 580

5.12 Exemple complet 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYN TAXE)

--> "new Page"

if "Page.onSecurityCheck" then
->[true] "Page.onInit()"

if "isForward?" then
->[no] "Process controls"

if "continue processing?" then
-->[yes] ===RENDERING===

else
-->[no] ===REDIRECT_CHECK===
endif
else
-->[yes] ===RENDERING===
endif

if "is Post?" then
-->[yes] "Page.onPost()"
--> "Page.onRender ()" as render
—--> ===REDIRECT_CHECK===
else
-->[no] "Page.onGet()"
—--> render
endif

else
-->[false] ===REDIRECT_CHECK===
endif

if "Do redirect?" then

->[yes] "redirect request"

--> ==BEFORE_DESTROY===

else

if "Do Forward?" then
-left->[yes] "Forward request"
—--> ==BEFORE_DESTROY===

else
-right->[no] "Render page template"
—--> ==BEFORE_DESTROY===

endif

endif

--> "Page.onDestroy ()"
—=>(%)

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

118 / 580

5.12 Exemple complet 5 DIAGRAMMES D’ACTIVITE (ANCIENNE SYNTAXE)

Servlet Container

| ClickServiet handieRequest() |

¥

[f new Page\

!
A

Page onSecurntyCheck V

true [~ ™
——>| Page.oninit() |

isForward?

false

ra Ty e Y
| Page.onPost() | | Page.onGet() |

N/

s ™
| Page.onRender() |

Do redirect?

-,

!

.r'—"\
Forward request

J

g ™
|\ Page.onDestroy()]

3

Guide de référence du langage PlantUML (1.2025.0) 119 / 580

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

6 Diagramme d’activité (nouvelle syntaxe)

La syntaxe précédente utilisée pour les diagrammes d’activité présentait plusieurs limitations et prob-
lemes de maintenabilité. Conscients de ces inconvénients, nous avons introduit une syntaxe et une
implémentation entiérement remaniées qui sont non seulement conviviales mais aussi plus stables.

6.0.1 Avantages de la nouvelle syntaxe

e Aucune dépendance a I'égard de Graphviz : Tout comme pour les diagrammes de séquence, la nou-
velle syntaxe élimine la nécessité d’installer Graphviz, ce qui simplifie le processus de configuration.

e Facilité de maintenance : La nature intuitive de la nouvelle syntaxe signifie qu’il est plus facile de
gérer et de maintenir vos diagrammes.

6.0.2 Transition vers la nouvelle syntaxe

Bien que nous continuions & prendre en charge ’ancienne syntaxe pour maintenir la compatibilité, nous
encourageons vivement les utilisateurs a migrer vers la nouvelle syntaxe pour tirer parti des fonctionnalités
améliorées et des avantages qu’elle offre.

Faites le changement des aujourd’hui et découvrez un processus de création de diagrammes plus rationalisé
et plus efficace avec la nouvelle syntaxe de diagramme d’activité.

6.1 Action simple

L’étiquette des activités commence par : et se termine par ;.

Le formatage du texte peut se faire en utilisant la syntaxe wiki créole.
Ils sont implicitement liés dans I'ordre de leur définition.

@startuml

:Hello world;

:This is defined on
several **xlines*x;
Q@enduml

.,.7.\.
|. Hello world |

| This is defined on
| several lines

A

6.2 Départ/Arrét [start, stop, end]
Vous pouvez utiliser les mots clés start et stop pour indiquer le début et la fin du diagramme.

@startuml

start

:Hello world;

:This is on defined on
several **xlines*x;
stop

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 120 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

?

|' Hello world ‘|
L Y,

This is on defined on
| several lines

-

-~

Vous pouvez aussi utiliser le mot clé end.

@startuml

start

:Hello world;

:This is on defined on
several **xlines*x*;

end

Q@enduml

?

|I' Hello world]

s -~

- - ™,

This is on defined on
| several lines

-

6.3 Conditionnel [if, then, else]

Vous pouvez utiliser les mots clés if, then et else pour mettre des tests dans votre diagramme. Les

étiquettes peuvent étre fournies entre parentheses.
Les trois syntaxes possibles sont:
e if (...) then (...)

@startuml
start

if (Graphviz installed?) then (yes)
:process all\ndiagrams;
else (no)
:process only
__sequence__ and __activity__ diagrams;
endif

stop

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

121 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

Graphviz installed?

e ™ ' ™
process all process only
diagrams

sequence and activity diagrams
Y,

hs —

e if (...) is (...) then

@startuml

if (color?) is (<color:red>red) then
:print red;

else

:print not red;

Q@enduml

r R ~,
| printred | | print notred |
. JN

e if (...) equals (...) then

@startuml

if (counter?) equals (5) then
:print 5;

else

:print not 5;

Q@enduml

ra N e Y
| print 5 | | print not 5 |
- A p A

L > e

[Ref. QA-301]

6.3.1 Plusieurs conditions (en mode horizontal)
Vous pouvez utiliser le mot clé elseif pour avoir plusieurs tests, par défaut le mode est horizontal :

O@startuml

start

if (condition A) then (yes)
:Text 1;

elseif (condition B) then (yes)
:Text 2;
stop

elseif (condition C) then (yes)
:Text 3;

elseif (condition D) then (yes)
:Text 4;

else (nothing)

§

Guide de référence du langage PlantUML (1.2025.0) 122 / 580

6.3 Conditionnel [if, then, else] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

:Text else;
endif
stop
Q@enduml

condition A>—)-<|:ondition B condition C>—)<oond'nion D nothing
yes 5 yes 5

ye ye
L P . Y
., Y ., \l I/ '\.I ., \l
| Text1 | | Text 2 | | Text 3 | | Text4 | Y
NS b _ N L Fi h
| Text else |
Y \ 4 Y Y

®

6.3.2 Plusieurs conditions (en mode vertical)

Vous pouvez utiliser la commande !pragma useVerticalIf on pour avoir les conditions en mode vertical

@startuml

!pragma useVerticallf on

start

if (condition A) then (yes)
:Text 1;

elseif (condition B) then (yes)
:Text 2;
stop

elseif (condition C) then (yes)
:Text 3;

elseif (condition D) then (yes)
:Text 4;

else (nothing)
:Text else;

endif

stop

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 123 / 580

6.4 Switch and case [switch, case, endswit6h] DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

o

condition A Vit

.’ -.'\
| Text 1 |
p.
v L
- yes
condition B) W
l/
| Text 2
e |
Y
condition C LB
' R
|_ Text 3

“ -~
v L

condition D 185

r h

nothing | Text 4

|r Text else |
")

[Réf. QA-3931]

*[Refs. [QA-3931](https:forum.plantuml.net/3931 /please-provide-elseif-structure-vertically-activity-diagrams),
[issue-582](https:github.com/plantuml/plantuml/issues/582)]*

*[Refs. [QA-3931](https: forum.plantuml.net/3931 /please-provide-elseif-structure-vertically-activity-diagrams),
[GH-582](https:github.com/plantuml/plantuml/issues/582)]*

6.4 Switch and case [switch, case, endswitch]
Vous pouvez utiliser les mots clés switch, case et endswitch pour mettre des tests dans votre diagramme.
Les étiquettes peuvent étre fournies entre parentheses.

@startuml

start

switch (test?)

case (condition A)
:Text 1;

case (condition B)
:Text 2;

case (condition C)
:Text 3;

case (condition D)
:Text 4;

case (condition E)
:Text 5;

endswitch

stop

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 124 / 580

6.5 Arrét aprés une action au sein d’une c6ndRIAGRMAMIMEERACTIVITE (NOUVELLE SYNTAXE)

2

condition A

Y -

[Text1 | (

b

6.5 Arrét aprés une action au sein d’une

™y

.,

L

A

test?
condition B dition C condition D
.) i . .
Text2 | | Text3 | | Text4 |

&

L

condition E
.

r ™,

| Text 5 |

h

- -

Vous pouvez arréter le processus apres une action.

@startuml

if (condition?) then

ierror;
stop
endif

#palegreen:action;

@enduml

| error |

-

g \
2

[aﬁm(]

condition [kill, detach]

Vous pouvez également utiliser les mots clé kill ou detach pour mettre fin au processus directement

dans une action.
e kill

@startuml

if (condition?) then

#pink:error;
kill
endif

#palegreen:action;

@enduml

[Ref. QA-265]

§

Guide de référence du langage PlantUML (1.2025.0)

125 / 580

6.6 Boucle de répétition [repeat, repeatwhile, PAAIGRANIME D’ACTIVITE (NOUVELLE SYNTAXE)

e detach

@startuml

if (condition?) then
#pink:error;
detach

endif

#palegreen:action;

@enduml

r

[amﬂﬂ

Y

6.6 Boucle de répétition [repeat, repeatwhile, backward]
Vous pouvez utiliser les mots clés repeat et repeatwhile pour créer une boucle.
@startuml
start
repeat

:read data;

:generate diagrams;
repeat while (more data?)

stop

@enduml

|r read data |
\ J

v A

r B
enerate diagrams
K grams. |

S

Il est également possible :
o d’utiliser une vrai action comme cible de répétition, apres le premier mot clé repeat,
o d’insérer une action dans le chemin de retour a l’aide du mot clé backward.

@startuml

start

§

Guide de référence du langage PlantUML (1.2025.0) 126 / 580

6.7 Interruption d’une boucle [break] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

repeat :foo as starting label;
:read data;
:generate diagrams;
backward:This is backward;
repeat while (more data?)

stop

@enduml

- ?

|. foo as starting label |'(7
" J

|. read data |

s -

I Y
| This is backward |

f -

¥

-

|_ generate diagrams \l
. -~

[Ref. QA-5826]

6.7 Interruption d’une boucle [break]

Vous pouvez utiliser le mot clé break apres une action sur une boucle:

O@startuml
start
repeat
:Test something;
if (Something went wrong?) then (no)
#palegreen:0K;
break
endif
->NOK;
:Alert "Error with long text";

repeat while (Something went wrong with long text?) is (yes) not (no)

->//merged step//;
:Alert "Success";
stop

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

127 / 580

6.8 Goto and Label Processing [label, gotd] DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

I ™
|. Test something |
" J

Something went wiong 7

MNOK

N

| Alert "Error with long text” |
Something went wrong with long text?>y£
no

-

T

merged step

|r Alert "Success” |

[Ref. QA-6105]

6.8 Goto and Label Processing [label, goto]
It is currently only experimental
You can use label and goto keywords to denote goto processing, with:
e label <label name>
e goto <label_name>

@startuml

title Point two queries to same activity\nwith “goto~
start

if (Test Question?) then (yes)

'space label only for alignment
label sp_labO

label sp_labl

'real label

label lab

:shared;

else (no)

if (Second Test Question?) then (yes)
label sp_lab2

goto sp_labl

else

:nonShared;

endif

endif

:merge;

§

Guide de référence du langage PlantUML (1.2025.0) 128 / 580

6.9 Boucle « tant que » [while] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

@enduml

Point two queries to same activity
with "goto’

/-_\r_-\
| shared |

p -
|. merge |
\ J

[Ref. QA-15026, QA-12526 and initially QA-1626]

6.9 Boucle « tant que » [while]
Vous pouvez utiliser les mots clés while et end while pour définir une boucle.
@startuml
start
while (data available?)
:read data;
:generate diagrams;
endwhile

stop

@enduml

data available?

|r read data |
\ Y,
A
¥ :
|I generate diagrams |
\ p.
I S

Il est possible de mettre un libellé apres le mot clé endwhile ou bien avec le mot clé is.

O@startuml

while (check filesize 7) is (not empty)
:read file;

endwhile (empty)

:close file;

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 129 / 580

6.10 Traitement paralléle [fork, fork againfent) FARRAM MErdo]ACTIVT TE (NOUVELLE SYNTAXE)

emOlY” chack filesize ?

not empty

Y

i 5
| readfie |

&

e ™y
| close file |
\)

-

6.10 Traitement paralléle [fork, fork again, end fork, end merge]

Vous pouvez utiliser les mots clés fork, fork again et end fork ou end merge pour indiquer un traite-
ment parallele.

6.10.1 Simple fork

@startuml
start
fork
action 1;
fork again
:action 2;
end fork
stop
Q@enduml

)

Fom ™, e Y
action 1 | | action 2 |

" - A

|

6.10.2 fork avec fusion finale

@startuml
start
fork
action 1;
fork again
:action 2;
end merge
stop
Q@enduml

)

-

| action 2

action 1 | |
\ J J

d

§

Guide de référence du langage PlantUML (1.2025.0) 130 / 580

6.10 Traitement paralléle [fork, fork againfent) FARRAM MErdo]ACTIVT TE (NOUVELLE SYNTAXE)

[Réf. QA-5320]

@startuml
start
fork
raction 1;
fork again
action 2;
fork again
raction 3;
fork again
:action 4;
end merge
stop
@enduml

- - - - . -
| action1 | | action2 | | action3 | | actiond |
\ AN y \ AN y

@startuml
start
fork
:action 1;
fork again
raction 2;
end
end merge
stop
Q@enduml

-

| action 2 \|

e =, - vy
action 1 |
k- A

[Réf. QA-13731]

6.10.3 Label sur end fork (ou UML joinspec)

@startuml

start

fork
:action A;

fork again

§

Guide de référence du langage PlantUML (1.2025.0) 131 / 580

6.10 Traitement paralléle [fork, fork againfent) FARRAM MErdo]ACTIVT TE (NOUVELLE SYNTAXE)

raction B;
end fork {or}
stop
Q@enduml

@startuml
start
fork
:action A;
fork again
:action B;
end fork {and}
stop
@enduml

[Réf. QA-5346]

6.10.4 Autre exemple

@startuml

start

if (multiprocessor?) then (yes)

fork
:Treatment 1;
fork again
:Treatment 2;
end fork
else (monoproc)
:Treatment 1;
:Treatment 2;
endif

@enduml

§

)

s Y re Y
| actionA | | actionB |
\ Y, J

for}

.

re Y e Y
| action A | | actiong |
p. \

{and}

1

Guide de référence du langage PlantUML (1.2025.0)

132 / 580

6.11 Traitement fractionné

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

a -1 s =,
| Treatment 1 | | Treatment 2 |
. vy . A

k-

multiprcessor?

Fa ™
| Treatment 1 |
\ Y,

P y ™
| Treatment 2 |
R -

: .

v

6.11 Traitement fractionné

6.11.1 Split

Vous pouvez utiliser les mots-clés split, split again et end split pour indiquer un traitement frac-

tionné

O@startuml
start
split
:A;
split again
:B;
split again
:C;
split again
1a;
:b;
end split
:D;
end
@enduml

6.11.2 Fractionnement de ’entrée (multidébut)

Vous pouvez utiliser les fleches hidden pour effectuer un fractionnement de 'entrée (multidébut)

@startuml
split

-[hidden] >

1A,
split again

§

Guide de référence du langage PlantUML (1.2025.0)

133 / 530

6.11 Traitement fractionné

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

-[hidden]->
:B;

split again
-[hidden]->
:C;

end split

:D;

@enduml

@startuml

split
-[hidden] >
1A,

split again
-[hidden] —>
ra;
:b;

split again
-[hidden]->
(@

end split

:D;

Q@enduml

[Ref. QA-8662]

6.11.3 Fractionnement de la sortie (plusieurs extrémités)

TN STy T
(a](e](c]
| D)

A A

Vous pouvez utiliser kill ou detach pour effectuer un fractionnement de la sortie (plusieurs extrémités)

@startuml
start
split
1A,
kill
split again
:B;
detach
split again
:C;

§

Guide de référence du langage PlantUML (1.2025.0)

134 / 580

6.12 Notes 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

kill
end split
@enduml

lafle]lc]
WAAY

O@startuml
start
split
1A,
kill
split again
:b;

:c;
detach
split again

(2
detach
split again

end
split again
stop
end split
@enduml

6.12 Notes

Le formatage du texte peut étre fait en utilisant la syntaxe wiki créole.
Une note peut étre flottante, en utilisant le mot clé floating

@startuml

start
:fool;
floating note left: This is a note
:fo02;
note right
This note is on several
//lines// and can
contain HTML

* Calling the method ""foo()"" is prohibited
end note
stop

§

Guide de référence du langage PlantUML (1.2025.0) 135 / 580

6.12 Notes

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

@enduml

¢

(1)

This note is on several
lines and can

— contain HTML

#+ Calling the method foo i) is prohibited

Vous pouvez ajouter une note sur l'activité de retour en arriere

@startuml

start

repeat :Enter data;
:Submit;

backward :Warning;
note right: Note

repeat while (Valid?) is (No) not (Yes)

stop
@enduml

[Ref. QA-11788]

s ™
|. Warning = Note

Vous pouvez ajouter une note sur l’activité de partition

@startuml
start

partition "**process** HelloWorld" {

note
This is my

note

//Creole test//

end note
:Ready;
:HelloWorld(i)>
:Hello-Sent;

}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

136 / 530

6.13 Couleurs 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

process Helloworld)
JL\
(Headv |
N
" [N
This is my note
HelloWorld(i)
Creole test
J%
Hello-Sent |

[Réf. QA-2398)

6.13 Couleurs

Vous pouvez spécifier une couleur pour certaines activités
@startuml

start

:starting progress;

#HotPink:reading configuration files

These files should be edited at this point!;
#AAAAAA:ending of the process;

@enduml

maﬂngpngmﬁs)

Vous pouvez également utiliser une couleur dégradée

@startuml

start

partition #red/white testPartition {
#blue\green:testActivity;

X

@enduml

[Réf. QA-4906]

3

Guide de référence du langage PlantUML (1.2025.0) 137 / 580

6.14 Lignes sans pointe de fleches 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

6.14 Lignes sans pointe de fleches

Vous pouvez utiliser skinparam ArrowHeadColor none pour connecter des activités en utilisant unique-
ment des lignes, sans fleches (sans pointe sur les fleches).

@startuml

skinparam ArrowHeadColor none
start

:Hello world;

:This is on defined on
several **xlines*x;

stop
@enduml
[Hetlo world |
\ J
- This is on defined on -
| several lines |
@startuml
skinparam ArrowHeadColor none
start
repeat :Enter data;
:Submit;

backward :Warning;

repeat while (Valid?) is (No) not (Yes)
stop

Q@enduml

.

| Enter data]7

i

-

[Submit | | Waming |

s

o 2

Yes

®

6.15 Fléches

En utilisant la notation ->, vous pouvez ajouter du texte a une fleche, et changer sa couleur.
Il est aussi possible d’avoir des fleches en pointillé, en gras, avec des tirets ou bien completement cachées.

@startuml
:fool;
-> You can put text on arrows;
if (test) then
- [#blue] >
:foo2;
-[#green,dashed]-> The text can

§

Guide de référence du langage PlantUML (1.2025.0) 138 / 580

6.16 Connecteurs 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

also be on several lines
and **very** long...;
:foo3;

else
- [#black,dotted] —>
:foo4;

endif

- [#gray,bold] ->

:foob;

Q@enduml

|,-_-\|
|. foo1 |

You can put text on arrows

|j foo2 | [foos |
”ﬁ—j S
| The text can

| also be on several lines
I and very long...

-

|I foo3d |
099)
| foos |

6.16 Connecteurs
Il est possible d’utiliser des parentheses pour dessiner des connecteurs.

@startuml

start

:Some activity;
(@Y)

detach

@)

:0ther activity;
@enduml

Some activity |
J

-'f-

|. Other activity |
% y
6.17 Connecteurs en couleur

Vous pouvez ajouter des couleurs aux connecteurs.

@startuml

§

Guide de référence du langage PlantUML (1.2025.0)

139 / 580

6.18 Regroupement ou partition 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

start

:The connector below
wishes he was blue;
#blue: (B)

:This next connector
feels that she would
be better off green;
#green: (G)

stop

Q@enduml

‘ The connector below |

wishes he was blue
\ p.

This next connector
feels that she would
| be better off green |

s

[Ref. QA-10077]

6.18 Regroupement ou partition
6.18.1 Groupe
Vous pouvez regrouper des activités en définissant un groupe

O@startuml
start
group Initialization
:read config file;
:init internal variable;
end group
group Running group
:wait for user interaction;
:print information;
end group

stop
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 140 / 580

6.18 Regroupement ou partition

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

6.18.2 Partition

Vous pouvez regrouper des activités en définissant une partition

@startuml
start

partition Initialization {
:read config file;
:init internal variable;

3

partition Running {
:wait for user interaction;
:print information;

stop
Q@enduml

Initializatio
¥ .

F B

|_ read config file |

I 2

| init internal variable |
\ p,

|Running gm$p)

-

; \
| wait for user interaction |
\ J

|. print information |
b A

®

Initializatio
¥ .

F, B

|_ read config file |

I 2

| init internal variable |
\ p,

lRunniEJ

¥

-

; \
| wait for user interaction |
\ J

|. print information |
b A

X

®

Il est également possible de changer la couleur de la partition

§

Guide de référence du langage PlantUML (1.2025.0)

141 / 580

6.18 Regroupement ou partition

6 I)LACH{AAAA4E)I)Qﬁ(ﬂFIVYﬂY@(TVCH]VQELLE?SYTJTA)(EU

@startuml
start

partition #lightGreen "Input Interface" {

:read config file;
:init internal variable;
}
partition Running {
:wait for user interaction;
:print information;
}
stop
Q@enduml

[Réf. QA-2795)

Input Interf

hoe)

.

¢
| read co
N,

7

.

nfig file

l init internal variable

R 2

)

lRuangJ

Y

-

b

| wait for user interaction

¥

|. print information |
\

™

Y
J

®

Il est également possible d’ajouter un lien a la partition

@startuml
start

partition "[[http://plantuml.com partition_name]]" {
:read doc. on [[http://plantuml.com plantuml_website]];

:test diagram;
b
end
@enduml

[Réf. QA-542)

§

|parition name

Y

| read doc. on plantuml_website

o

v

A

™

: test diagram l
|_ gram |

oy

®

Guide de référence du langage PlantUML (1.2025.0)

142 / 580

6.18 Regroupement ou partition

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

6.18.3 Groupe, partition, paquet, rectangle ou carte

Vous pouvez regrouper des activités en définissant :

e groupe ;

e partition ;
e paquet ;

e rectangle ;
e carte

@startuml

start

group Group
tActivity;

end group

floating note: Note

partition Partition
:Activity;

X

floating note: Note

package Package {
:Activity;

X

floating note: Note

rectangle Rectangle
:Activity;

by

floating note: Note

card Card {
tActivity;

}

floating note: Note

end

Q@enduml

on

on

on

on

on

Group

Partition

Package

Rectangle

Card

«
&« Guide de référence du langage PlantUML (1.2025.0) 143 / 580

6.19 Swimlanes 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

.Group)
.

N)

Mote on Group | Activity |

Partition }
N

I L |

Mote on Partition | Activity |

"

Package\

Mote on Package | Activity |

b

Rectangle

Y

< !

Note on Rectangle | Activity |
Card

Y
A
(o)

6.19 Swimlanes
En utilisant le tube |, vous pouvez définir des swimlanes.
Il est également possible de changer la couleur des swimlanes

@startuml
|Swimlanel |
start
:fool;
|#AntiqueWhite|Swimlane?2|
:fo02;
:foo3;
|Swimlanel|
:foo4;
|Swimlane?2 |
:foob;

stop
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 144 / 580

6.19 Swimlanes

6 I)LACH{AAJNHEIDVXCUYWUTY?(AK)UWUZLLE?SYTVTA)(EU

Swimlane1

?

I ™y
|_ foo1 |

|

Swimlane2

A

| fo02 |

Vous pouvez ajouter une boucle conditionnelle if ou repeat ou while a l'intérieur des swimlanes
p J p

@startuml
|#pink|Actor_For_red|

start

if (color?) is (red) then
#pink:**action redx*x;

:fool;

else (not red)
|#lightgray|Actor_For_no_red]|
#lightgray:**action not red*x;
:fo02;

endif

|Next_Actor|

#lightblue:foo3;

:foo4;

|Final_Actor|
#palegreen:foob;

stop

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

145 / 580

6.19 Swimlanes 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

Actor For_red |Actor_For_no_red|Next_Actor|Final_Actor

not red

red czgl
ZAL Y

Laﬂhnmd] famMnmnmd]
- vy pN vy
|r foo1 | | foo2 |
b & b &
T e 1
.
i
| foo3 |
K:I:J
| food |
. S
,1
|. foos |

®

Vous pouvez également utiliser alias avec les swimlanes, avec cette syntaxe :
e | [#<color>|]<swimlane_alias>| <swimlane_title>

@startuml
|#palegreen|f| fisherman
[cl cook
|#gold|e| eater
If]

start

:go fish;

lcl

:fry fish;

lel

:eat fish;

stop

@enduml

fisherman| cook | eater

v

| go fish |
Y A
| fryfish |
e ~
| eatfish |
e A

T

[Réf. QA-2681]

§

Guide de référence du langage PlantUML (1.2025.0) 146 / 580

6.20 Détacher ou arréter [detach, kill] 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

6.20 Détacher ou arréter [detach, kill]

Il est possible de supprimer une fleche en utilisant le mot clé detach ou kill :
e detach

@startuml
:start;
fork
:fool;
:foo02;
fork again
:fo003;
detach
endfork
if (foo4) then
:foob;
detach
endif
:foo6;
detach
:foo7;
stop
Q@enduml

e kill

@startuml
:start;
fork
:fool;
:foo02;
fork again
:fo03;
kill

§

Guide de référence du langage PlantUML (1.2025.0)

147 / 580

6.21 SDL (Specification and Description Langub4é6)RAMME D’ACTIVITE (NOUVELLE SYNTAXE)

endfork
if (foo4) then
:foob;
kill
endif
:foo06;
kill
:foo7;
stop
Q@enduml

6.21 SDL (Specification and Description Language)

En changeant le séparateur final ;, vous pouvez déterminer différents rendus pour 1’ activité, confor-
mément au langage de description et de spécification (LDS) ou Specification and Description Language
(SDL) (en anglais) :

o \\
e]
o 3

@startuml
:Ready;
:next (o) |
:Receiving;
split
:nak(i)<

§

Guide de référence du langage PlantUML (1.2025.0) 148 / 580

6.22 Exemple complet 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

rack(o)>
split again
rack(i)<
:next (o)
on several line]
o= i+ 1]
rack(o)>
split again
rerr(i)<
:nak (o) >
split again
:foo/
split again
:bar\\
split again
:i > 5}
stop
end split
:finish;
@enduml

M A
next(o)
| Receiving |
A~ oy
ack(i)
! I Y
LS next(a) o j |
nak(l) % || on several line err(i) b, A i Y Li=5)
."'Ifno | bar |
Y ’ Y L N
ack(a) Y =i+ nakio) "}
ack(o) :

6.22 Exemple complet

@startuml

start
:ClickServlet.handleRequest () ;
‘new page;
if (Page.onSecurityCheck) then (true)
:Page.onInit();
if (isForward?) then (no)
:Process controls;

§

Guide de référence du langage PlantUML (1.2025.0) 149 / 580

6.22 Exemple complet 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

if (continue processing?) then (no)
stop
endif

if (isPost?) then (yes)
:Page.onPost () ;
else (no)
:Page.onGet () ;
endif
:Page.onRender () ;
endif
else (false)
endif

if (do redirect?) then (yes)
:redirect process;
else
if (do forward?) then (yes)
:Forward request;
else (no)
:Render page template;
endif
endif

stop

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 150 / 580

6.23 Style de condition 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

*

| ClickServiet handleRequest() |
. vy

I \u
|\new page f,|

Page.onSecurntyCheck
true

| Page.onlnit() |

N

|’ \u
|. Process controls |
hS s

<)) >ng: @
continue processing?
Y

| Page.onPost() | |;\Page.clnﬂiet[) |

v

|r Page.onRender(|
| Pag }J,

A

A

- o,

redirect process

-~ =,
\.

Render page tern|:||a.=.|t|3-/f

F-

|l Forward request I |r
. "y .

é

6.23 Style de condition
6.23.1 Style intérieur (par défaut)

@startuml
skinparam conditionStyle inside
start
repeat
racti;
ract2;
repeatwhile (end)
ract3;

§

Guide de référence du langage PlantUML (1.2025.0)

151 / 580

6.23 Style de condition 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

@enduml
| sett |
L vy
!
-'/- -\u
| act2 |
-I- -\u
| act3 |

@startuml

start

repeat

ractl;
ract2;

repeatwhile (end)

:act3;

@enduml
| aett |
o
v A
-I- -\u
| act2 |
-'/- -\u
| actd |

6.23.2 Style diamant

@startuml
skinparam conditionStyle diamond
start
repeat
racti;
ract2;
repeatwhile (end)
:act3;
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

152 / 580

6.23 Style de condition

6 I)LACH{AAAA4E)I)Qﬁ(ﬂFIVYﬂY@(TVCH]VQELLE?SYTJTA)(EU

[am1]
1A
| ac2 |
and
acts |
6.23.3 Style InsideDiamond (ou Foo1l)
O@startuml
skinparam conditionStyle InsideDiamond
start
repeat
ractl;
ract2;
repeatwhile (end)
:act3;
Q@enduml
[am1]
)
v A
[actz |
'u;;/
o s
(\eng>>—
| acts |
L
O@startuml

skinparam conditionStyle fool
start
repeat
ractl;
ract2;
repeatwhile (end)
:act3;
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 153 / 580

6.24 Style de fin de condition 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

Ref. QA-1290 et #400]

6.24 Style de fin de condition
6.24.1 Style diamant (par défaut)
e Avec une branche

@startuml
skinparam ConditionEndStyle diamond
1A,
if (decision) then (yes)
:B1;
else (no)
endif
:C;
@enduml

e Avec deux branches (B1, B2)

@startuml

skinparam ConditionEndStyle diamond

14,

if (decision) then (yes)
:B1;

else (no)
:B2;

endif

:C;

Q@enduml

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

154 / 580

6.24 Style de fin de condition 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

r- ™
| A
Ry

[:3 - no
¥ decision

| B1 | B2 |

¢

6.24.2 Style ligne horizontale (hline)
e Avec une branche

@startuml
skinparam ConditionEndStyle hline
1A,
if (decision) then (yes)
:B1;
else (no)
endif
:C;
@enduml

¢ Avec deux branches (B1, B2)

@startuml

skinparam ConditionEndStyle hline

14,

if (decision) then (yes)
:B1;

else (no)
:B2;

endif

:C;

Q@enduml

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

155 / 530

6.25 Avec le style (global)

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

¢
[Réf. QA-4015]
6.25 Avec le style (global)
6.25.1 Sans style (par défaut)
@startuml
start
:init;
-> test of color;
if (color?) is (<color:red>red) then
:print red;
else
:print not red;
note right: no color
endif
partition End {
:end;
}
-> this is the end;
end
@enduml
|' init '|
test of color
j print red | |:|r|nt not red |'

8

d

6.25.2 Avec style

this is the end

/ /
Endﬁ

no color

Vous pouvez utiliser le style pour modifier le rendu des éléments.

@startuml

§

Guide de référence du langage PlantUML (1.2025.0)

156 / 530

6.25 Avec le style (global)

6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

<style>

activityDiagram {
BackgroundColor #33668E
BorderColor #33668E
FontColor #888
FontName arial

diamond {
BackgroundColor #ccf
LineColor #OOFFOO
FontColor green
FontName arial
FontSize 15
}
arrow {
FontColor gold
FontName arial
FontSize 15
}
partition {
LineColor red
FontColor green
RoundCorner 10
BackgroundColor PeachPuff
3
note {
FontColor Blue
LineColor Navy
BackgroundColor #ccf
}
3
document {
BackgroundColor transparent
}
</style>
start
:init;
-> test of color;
if (color?) is (<color:red>red) then
:print red;
else
:print not red;
note right: no color
endif
partition End {
:end;
X
-> this is the end;
end
Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 157 / 580

6.25 Avec le style (global) 6 DIAGRAMME D’ACTIVITE (NOUVELLE SYNTAXE)

red

3

Guide de référence du langage PlantUML (1.2025.0) 158 / 580

7 DIAGRAMME DE COMPOSANTS

7 Diagramme de composants

Diagramme de composants: Un diagramme de composants est un type de diagramme structurel utilisé
dans UML (Unified Modeling Language) pour visualiser I'organisation et les relations des composants
d’un systeme. Ces diagrammes aident a décomposer des systémes complexes en composants gérables, en
montrant leurs interdépendances, et en assurant une conception et une architecture efficaces du systeme.

Avantages de PlantUML:

e Simplicité: Avec PlantUML, vous pouvez créer des diagrammes de composants en utilisant des
descriptions textuelles simples et intuitives, éliminant le besoin d’outils de dessin complexes.

e Intégration: PlantUML s’intégre de maniére transparente a divers outils et plateformes, ce qui en
fait un choix polyvalent pour les développeurs et les architectes.

¢ Collaboration: Le forum PlantUML offre une plateforme aux utilisateurs pour discuter, partager
et demander de 'aide sur leurs diagrammes, favorisant ainsi une communauté de collaboration.

7.1 Composants
Les composants doivent étre mis entre parentheses.

Vous pouvez également utiliser le mot-clé component pour définir un composant . Et vous pouvez définir
un alias, en utilisant le mot-clé as . Cet alias sera utilisé plus tard, lors de la définition des relations

@startuml
[First component]
[Another component] as Comp2

component Comp3
component [Last\ncomponent] as Comp4

@enduml

£

Another component

g]
First component

Last
component

g]
Comp3
7.2 Interfaces

Les interfaces sont définies & ’aide du symbole () (parce que cela ressemble & un cercle).

Vous pouvez aussi utiliser le mot-clé interface pour définir une interface. Vous pouvez aussi définir un
alias, a I’aide du mot-clé as. Cet alias pourrait étre utilisé plus tard, lors de la définition des relations.

Nous verrons plus tard qu’il n’est pas obligatoire de définir les interfaces.

@startuml

() "First Interface"

() "Another interface" as Interf2
interface Interf3

interface "Last\ninterface" as Interf4

[component]
footer //Adding "component" to force diagram to be a **component diagram*x*//
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 159 / 580

7.3 Exemple de base 7 DIAGRAMME DE COMPOSANTS

I/_\I I/ \I I/ \I
First Interface Ancther interface Interf3

- g1
I/ '\I
— component

Last
interface

i Component (.'ul."yl'."l'ii

7.3 Exemple de base

Les liens entre les éléments sont établis & I’aide de combinaisons de symboles de lignes pointillées (. .),
de lignes droites (--) et de fleches (-=>)

@startuml

DataAccess - [First Component]
[First Component] ..> HTTP : use

@enduml
P E
L First Component
DataAccess I
I
|
se
I
I
/*\
HTTP

7.4 Utilisation des notes

Vous pouvez utiliser les mots-clés note left of ,note right of, note top of , note bottom of pour
définir des notes relatives a un seul objet.

Une note peut également étre définie seule avec les mots-clés note , puis liée a d’autres objets a I’aide du
symbole . .

@startuml
interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

note left of HTTP : Web Service only
note right of [First Component]

A note can also

be on several lines

end note

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 160 / 580

7.5 Regroupement de composants

7 DIAGRAMME DE COMPOSANTS

! First Component

Data Access I

use
|
b4
| Web Senvice only ()
HTTP

7.5 Regroupement de composants

£] __J A note can also

]

] be on several lines

Vous pouvez utiliser plusieurs mots-clés pour regrouper des composants et des interfaces

e package

e node

folder

frame

cloud

¢ database

@startuml

package "Some Group" {
HTTP - [First Component]
[Another Component]

}

node "Other Groups" {
FTP - [Second Component]
[First Component] --> FTP
}

cloud {
[Example 1]
}

database "MySql" {
folder "This is my folder" {
[Folder 3]
}
frame "Foo" {
[Frame 4]
}
¥

[Another Component] --> [Example 1]
[Example 1] --> [Folder 3]
[Folder 3] --> [Frame 4]

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

161 / 580

7.6 Changement de direction des fléches 7 DIAGRAMME DE COMPOSANTS

Some Group \

g]
First Component W Ancther Component
f HTTP
f
j Other Groups
Py E E
L Second Component Example 1
FTP
o T
e R
MyBql

This is my fnlder\
Y

E
Folder 3

7.6 Changement de direction des fleches
Par défaut, les liens entre les classes ont deux tirets —— et sont orientés verticalement. Il est possible
d’utiliser un lien horizontal en mettant un seul tiret (ou point) comme ceci

@startuml

[Component] --> Interfacel
[Component] -> Interface2
@enduml

Interface2

Interface

Vous pouvez également changer de direction en inversant le lien :

O@startuml

Interfacel <-- [Component]
Interface2 <- [Component]
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 162 / 580

7.6 Changement de direction des fléches 7 DIAGRAMME DE COMPOSANTS

Il est également possible de changer la direction de la fleche en ajoutant les mots-clés left, right, up ou
down a l'intérieur de la fleche

O@startuml

[Component] -left-> left
[Component] -right-> right
[Component] -up-> up
[Component] -down-> down
@enduml

Vous pouvez raccourcir la fleche en utilisant uniquement le premier caractére de la direction (par exemple,
-d- au lieu de -down-) ou les deux premiers caracteéres (-do-).

Veuillez noter que vous ne devez pas abuser de cette fonctionnalité

: Graphviz donne généralement de
bons résultats sans modification.

Et avec le parametre left to right direction parametre

@startuml

left to right direction
[Component] -left-> left
[Component] -right-> right
[Component] -up-> up
[Component] -down-> down
@enduml

Igft
P E T
L Component R
up down
@]
right

_ See also 'Change diagram orientation’ on [Deployment diagram](deployment-diagram) page.

§

Guide de référence du langage PlantUML (1.2025.0) 163 / 580

7.7 Utiliser la notation UML2 7 DIAGRAMME DE COMPOSANTS

7.7 Utiliser la notation UML2
Par défaut (4@ partir de la version v1.2020.13-14), la notation UML2 est utilisée.

@startuml
interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

@enduml

]
First Component

-~
i
"

Data Access i

|
|
IIJS\\'E.h
|
|

v

~
<

-
..

HTTP

7.8 Utiliser la notation UML1

La commande skinparam componentStyle umll est utilisée pour passer a la notation UML1

@startuml
skinparam componentStyle umlil

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

Q@enduml

:_:'_i First Component

Data Access

7.9 Utiliser le style rectangle (supprime toute notation UML)

La commande skinparam componentStyle rectangle est utilisée pour changer vers le style rectangle
(sans aucune notation UML).

O@startuml
skinparam componentStyle rectangle

interface "Data Access" as DA

DA - [First Component]
[First Component] ..> HTTP : use

§

Guide de référence du langage PlantUML (1.2025.0) 164 / 580

7.10 Description longue 7 DIAGRAMME DE COMPOSANTS

@enduml

'i_:'_{ First Component

Data Access

I
|
|
IIJS\\'E.h
|
|

v

~
<

-
.

HTTP

7.10 Description longue
Il est possible de mettre un long texte sur plusieurs lignes en utilisant des crochets.

@startuml
component compl [
This component

has a long comment
on several lines

]

@enduml

g]
This component
has a long comment
on several lines

7.11 Couleurs individuelles
Vous pouvez spécifier une couleur apres la définition du composant

@startuml
component [Web Server] #Yellow
@enduml

£
Web Server

7.12 Sprites et stéréotypes
Vous pouvez utiliser des sprites dans les stéréotypes des composants.

@startuml

sprite $businessProcess [16x16/16] {
FFFFFFFFFFFFFEFEFR
FFFFFFFFFFFFEFFEE
FFFFFFFFFFFFEFFEE
FFFFFFFFFFFFEFFEE
FFFFFFFFFFOFFFFF
FFFFFFFFFFOOFFFF
FFOO000000000FFF
FFOO0000000000FF
FFOOOOOOOOOOOFFF
FFFFFFFFFFOOFFFF
FFFFFFFFFFOFFFFF
FFFFFFFFFFFFEFFEE

§

Guide de référence du langage PlantUML (1.2025.0) 165 / 580

7.13 Skinparam 7 DIAGRAMME DE COMPOSANTS

FFFFFFFFFFFFEFFEE
FFFFFFFFFFFFFFEFE
FFFFFFFFFFFFEFEE
FFFFFFFFFFFEFFEFEFR
3

rectangle " End to End\nbusiness process" <<$businessProcess>> {
rectangle "inner process 1" <<$businessProcess>> as src
rectangle "inner process 2" <<$businessProcess>> as tgt

src —> tgt

X

@enduml

End to End
business process

inner process 1 inner process 2

7.13 Skinparam
Vous pouvez utiliser la commande skinparam pour modifier les couleurs et les polices du dessin.
Vous pouvez utiliser cette commande :
e Dans la définition du diagramme, comme toutes les autres commandes ;
e Dans un fichier inclus;
e Dans un fichier de configuration, fourni dans la ligne de commande ou la tadche Ant.
Vous pouvez définir des couleurs et des polices spécifiques pour les composants et les interfaces stéréotypés

@startuml

skinparam interface {
backgroundColor RosyBrown
borderColor orange

3

skinparam component {
FontSize 13
BackgroundColor<<Apache>> Pink
BorderColor<<Apache>> #FF6655
FontName Courier
BorderColor black
BackgroundColor gold
ArrowFontName Impact
ArrowColor #FF6655
ArrowFontColor #777777

}

() "Data Access" as DA
Component "Web Server" as WS << Apache >>

DA - [First Component]
[First Component] ..> () HTTP : use
HTTP - WS

§

Guide de référence du langage PlantUML (1.2025.0) 166 / 580

7.14 Parameétre de style spécifique 7 DIAGRAMME DE COMPOSANTS

Q@enduml
g
First Component
Data Access T
|
|
use
|
|
¥
— wApache»
Web Serwver
HTTP
@startuml

skinparam component {
backgroundColor<<static_lib>> DarkKhaki
backgroundColor<<shared_1lib>> Green

}

skinparam node {

borderColor Green

backgroundColor Yellow
backgroundColor<<shared_node>> Magenta

}

skinparam databaseBackgroundColor Aqua
[AA] <<static_lib>>

[BB] <<shared_lib>>

[CC] <<static_lib>>

node nodel

node node2 <<shared node>>
database Production

g1 g1
wstatic (ib» wstatic (ib»
AA CC
wshared node»
nodet : node2 [Ef_mﬂ“iﬂi

7.14 Parameétre de style spécifique

@enduml

7.14.1 componentStyle
o Par défaut (ou avec skinparam componentStyle uml2), vous avez une icdne pour le composant

@startuml
skinparam BackgroundColor transparent
skinparam componentStyle uml2
component A {

component "A.1" {

§

Guide de référence du langage PlantUML (1.2025.0) 167 / 580

7.14 Parameétre de style spécifique 7 DIAGRAMME DE COMPOSANTS

}

component A.44 {

[A4.1]

}

component "A.2"

[A.3]

component A.5 [
A.5]

component A.6 [
]
}
[a]->[b]
@enduml

£
A
g g1 g g g
a b A A2 A3
g
| [
¢ Sivous voulez la supprimer, et n’avoir que le rectangle, vous pouvez utiliser skinparam componentStyle
rectangle

O@startuml

skinparam BackgroundColor transparent
skinparam componentStyle rectangle
component A {

component "A.1" {

¥
component A.44 {
[A4.1]
}
component "A.2"
[A.3]
component A.5 [
A.5]
component A.6 [
]
¥
[a]l->[b]
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 168 / 580

7.15 Masquer ou supprimer un composant non lié

7 DIAGRAMME DE COMPOSANTS

Ref. 10798]

7.15 Masquer ou supprimer un composant non lié

Par défaut, tous les composants sont affichés

@startuml
component C1
component C2
component C3
C1 -- C2
@enduml

Mais vous pouvez :

c2

e hide @unlinked cacher des composants

@startuml
component C1
component C2
component C3
C1 -- C2

hide Qunlinked

@enduml

g1
c2

e ou remove Qunlinked supprimer des composants

@startuml
component C1
component C2

§

Guide de référence du langage PlantUML (1.2025.0)

169 / 530

7.16 Masquer, supprimer ou restaurer un composant balisé ou @n JokA«GRAMME DE COMPOSANTS

component C3
C1 -- C2

remove Qunlinked
@enduml

C1

Cc2
[Réf. QA-11052]

7.16 Masquer, supprimer ou restaurer un composant balisé ou un joker

Vous pouvez placer $tags (en utilisant $) sur des composants, puis supprimer, masquer ou restaurer des
composants individuellement ou par balises.

Par défaut, tous les composants sont affichés

@startuml

component C1 $tagl3
component C2
component C3 $tagil3
Cl1 -- C2

@enduml

c2

Mais vous pouvez :
e hide $tagl3 composants

@startuml

component C1 $tagl3
component C2
component C3 $tagl3
C1 -- C2

hide $tagil3
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 170 / 580

7.17 Display JSON Data on Component diagram

7 DIAGRAMME DE COMPOSANTS

e ou remove $tagl3 composants

@startuml

component C1 $tagl3
component C2
component C3 $tagl3
Cl1 —- C2

remove $tagl3
Q@enduml

g1
c2

e ou remove $tagl3 and restore $tagl composants

@startuml

component C1 $tagl3 $tagi
component C2

component C3 $tagl3

Cl1 -- C2

remove $tagl3

restore $tagl
@enduml

C1

]
c2

e ou remove * and restore $tagl composants

@startuml

component Cl $tagl3 $tagl
component C2

component C3 $tagl3

Cl1 -- C2

remove *
restore $tagl
Q@enduml

C1

[Réf. QA-7337 et QA-11052]

7.17 Display JSON Data on Component diagram

7.17.1 Simple example
O@startuml

allowmixing

component Component
O Interface

§

Guide de référence du langage PlantUML (1.2025.0)

171 / 580

7.18 Port [port, portln, portOut] 7 DIAGRAMME DE COMPOSANTS

json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}

@enduml

El £y
Component L

Interface

JSON
fruit | Apple
size | Large
color | Red
Green

[Ref. QA-15/81]

For another example, see on JSON page.

7.18 Port [port, portIn, portOut]

You can add port with port, portinand portout keywords.

7.18.1 Port

@startuml

[c]

component C {
port pl
port p2
port p3
component cl

c -—>pl
c -—> p2
c -—> p3
pl -——> ci1
p2 --> cil
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 172 / 580

7.18 Port [port, portln, portOut] 7 DIAGRAMME DE COMPOSANTS

7.18.2 PortIln

@startuml

[c]

component C {
portin pl
portin p2
portin p3
component cl

c -—>pl
c -—> p2
c -—> p3
pl -——> ci1
p2 --> cil
Q@enduml

7.18.3 PortOut

@startuml
component C {
portout pil
portout p2
portout p3

component cl
X
[o]
pl -—> o
p2 --> o
p3 ——> o
cl --> p1
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 173 / 580

7.18 Port [port, portln, portOut] 7 DIAGRAMME DE COMPOSANTS

7.18.4 Mixing PortIn & PortOut

@startuml

[i]

component C {
portin pl
portin p2
portin p3
portout pol
portout po2
portout po3
component cl

X

[o]
i-->p1
i-->p2
i-->p3
pl ——> c1
p2 --> cil
pol --> o
po2 --> o
po3 —-=> o
cl --> pol
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 174 / 580

7.18 Port [port, portln, portOut] 7 DIAGRAMME DE COMPOSANTS

§

Guide de référence du langage PlantUML (1.2025.0) 175 / 580

8 DIAGRAMME DE DEPLOIEMENT

8 Diagramme de déploiement

Un diagramme de déploiement est un type de diagramme qui visualise ’architecture des systémes,
montrant comment les composants logiciels sont déployés sur le matériel. Il fournit une image claire de
la distribution des composants sur différents nceuds, tels que les serveurs, les stations de travail et les
appareils.

Avec PlantUML, la création de diagrammes de déploiement devient un jeu d’enfant. La plateforme offre un
moyen simple et intuitif de concevoir ces diagrammes en utilisant du texte simple, assurant des itérations
rapides et un controle facile des versions. De plus, le forum PlantUML offre une communauté dynamique
ou les utilisateurs peuvent demander de l'aide, partager des idées et collaborer sur des défis de création
de diagrammes. L’un des principaux avantages de PlantUML est sa capacité a s’intégrer de maniere
transparente & divers outils et plateformes, ce qui en fait un choix privilégié pour les professionnels et les
passionnés.

8.1 Déclarer un élément

@startuml

action action
actor actor

actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card

circle circle

cloud cloud
collections collections
component component
control control
database database
entity entity

file file

folder folder

frame frame

hexagon hexagon
interface interface
label label

node node

package package
person person
process process
queue queue
rectangle rectangle
stack stack

storage storage
usecase usecase
usecase/ "usecase/"
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 176 / 580

8.1 Déclarer un élément 8 DIAGRAMME DE DEPLOIEMENT

= Lt
action)

PN PN

artifact

T
Eﬁ‘ xJ
boundary

agent‘
& hY & hY

actor actor/

f"”‘* £ r‘\
|E O [’ °|°”d) |@ component \“-”
control

circle

O label node >
interface '
A /f--_---ﬁ\ /"______-“‘\ /""-_____-"P.
| queue | | rectangle stack I\frtorage) -\E_L_ercas:e__x) -\m__ﬂsecase{ 2

Vous pouvez éventuellement mettre du texte en utilisant les crochets [1 pour une longue description.

@startuml
folder folder [
This is a folder

You can use separator

of different kind

and style
]

node node [
This is a node

You can use separator

of different kind

and style
]

database database [
This is a database

You can use separator

of different kind
and style

§

Guide de référence du langage PlantUML (1.2025.0) 177 / 580

8.2 Declaring element (using short form)

8 DIAGRAMME DE DEPLOIEMENT

usecase usecase [
This is a usecase

You can use separator

of different kind
and style

]

card card [

This is a card

You can use separator

of different kind

and style

<i><color:blue>(add from V1.2020.7)</color></i>

]

@enduml
This is a folder RS K This is a database
You can use separator You can use separator “You can use separator
of different kind of different kind { | of different ind '
and style and style andsiye

ff"”_ . This is a card
" This is a usecase -
\ You can use separator

You can use separator

; y of different kind

! \ of different kind

% 7 and style

. Ul (add from V1.2020.7)

8.2 Declaring element (using short form)

We can declare element using some short forms.

Long form Keyword | Short form Keyword | Long form example Short form example | Ref.
actor pac actor actoril ractor2: Actors
component [c] component componentl | [component2] Components
interface O interface interfacel | () "interface2" Interfaces
usecase Cu) usecase usecasel (usecase2) Usecases
8.2.1 Actor
@startuml

actor actorl
ractor2:

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

178 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DEPLOIEMENT

I,_\I I,_\I
a‘c:tor“I a’ctor“?
NB: There is an old syntazx for actor with guillemet which is now deprecated and will be removed some
days. Please do not use in your diagram.

8.2.2 Component

@startuml

component componentl

[component?2]
@enduml
g1 g1

component component2
8.2.3 Interface
@startuml
interface interfacel
() "interface2"
label "//interface example//"
@enduml

O O
interface interface2
interface example

8.2.4 Usecase
O@startuml
usecase usecasel
(usecase2)
@enduml

(" usecasel ¢ jhseaasez-ﬂﬁ

8.3 Linking or arrow

You can create simple links between elements with or without labels:
@startuml

node nodel

node node2

node node3
node node4

§

Guide de référence du langage PlantUML (1.2025.0) 179 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DEPLOIEMENT

node nodeb

nodel -- node2 : labell
nodel .. node3 : label2
nodel ~~ node4 : label3
nodel == nodeb

@enduml

£
i

i
labell ,label2 “label3

node2 node3 noded nodes

It is possible to use several types of links:

@startuml

artifact artifactl
artifact artifact2
artifact artifact3
artifact artifact4
artifact artifactb
artifact artifact6
artifact artifact7
artifact artifact8
artifact artifact9
artifact artifact10
artifactl --> artifact?2
artifactl -—* artifact3
artifactl --o artifact4
artifactl --+ artifactb
artifactl --# artifact6
artifactl -->> artifact?7
artifactl --0 artifact8
artifactl --~ artifact9
artifactl --(0 artifact10

@enduml

artifact2 E & E E

artifact3 artifactd artifacts artifactt artifact? artifactd artifactd

Tanifam10|3|

SREC e

You can also have the following types:

@startuml

cloud cloudl
cloud cloud?2
cloud cloud3
cloud cloud4

§

Guide de référence du langage PlantUML (1.2025.0) 180 / 580

8.3 Linking or arrow 8 DIAGRAMME DE DEPLOIEMENT

cloud cloudb

cloudl -0- cloud2
cloudl -0)- cloud3
cloudl -(0- cloud4
cloudl -(0)- cloud5

@enduml

or another example:

@startuml

actor fool

actor foo2

fool <-0-> foo02
fool <-(0)-> foo2

(acl) -1le(0)-> leftil
acl -ri(0)-> rightil
acl .up(0).> upl

acl ~up(0)~> up2

acl -do(0)-> downl
acl -do(0)-> down2

actorl -0)- actor2

component compl
component comp2
compl *-0)-+ comp2
[comp3] <-->> [comp4]

boundary bl
control cl
bl -(0)- c1

component compl
interface interfl
compl #~~(interfil

:modelactor: -0)- fooal
:modelactorl: -ri0O)- fooll

[component1] 0)-(0-(0 [componentC]
() component3)-0-(0 "foo" [componentC]

[azel] #-->> [aze2]
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 181 / 580

8.4 Bracketed arrow style

8 DIAGRAMME DE DEPLOIEMENT

T? Tor ¥ 7 3 SINES T S pn
N\ N\ A O L N\ N\ comp comp3 b\f N\ component1
upi 4L|p1 mode1actorl fooll foot actor1 i modelactor O corfiponent3
. 1
= = Q @]
—~ < ‘,Q — /,\I -~ : I fi
A Lt L Lt S EE— a —00—
FeorGior | t T [omd o 9 & f =
y \‘(O}'n_ramr/'{o), P A A comp2 = compd \'1'} componentC
7N 7N ¢ 7N
foo2 actor2 interf1 fo0al

left! é[% fightt
I\
I

downl down2

[Ref. QA-547 and QA-1736]
See all type on Appendix.

8.4 Bracketed arrow style

Similar as Bracketed class relations (linking or arrow) style

8.4.1 Line style

It’s also possible to have explicitly bold, dashed, dotted, hidden or plain arrows:

o without label

@startuml

node foo

title Bracketed line style without label
foo --> bar

foo -[bold]-> bari

foo -[dashed]-> bar2

foo -[dotted]-> bar3

foo -[hidden]-> bar4d

foo -[plain]-> barb

Q@enduml

Bracketed line style without label

o with label

@startuml

title Bracketed line style with label
node foo

foo --> bar

foo -[bold]-> bari : [bold]

foo -[dashed]-> bar2 : [dashed]

foo —-[dotted]-> bar3 : [dotted]

foo -[hidden]-> bar4 : [hidden]

foo -[plain]-> barb [plain]

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

182 / 580

azel

aze2

8.4 Bracketed arrow style

8 DIAGRAMME DE DEPLOIEMENT

[Adapted from QA-4181]

8.4.2 Line color

@startuml
title Bracketed line color
node foo

foo --> bar

foo -[#red]-> baril
foo -[#green]-> bar2
foo -[#blue]-> bar3

Bracketed line style with label

[#red]
[#green]
[#bluel

foo -[#blue;#yellow;#green]-> bard

Q@enduml

8.4.3 Line thickness

@startuml

title Bracketed line thickness

node foo

foo --> bar

foo -[thickness=1]-> barl

foo -[thickness=2]-> bar2

foo -[thickness=4]-> bar3

foo -[thickness=8]-> bar4

foo -[thickness=16]-> barb
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

“[dotted]

Bracketed line color

foo

[#red] |#green]

(1]
(2]
(4]
(8l
[16]

O

#blue]

183 / 530

8.5 Change arrow color and style (inline style) 8 DIAGRAMME DE DEPLOIEMENT

Bracketed line thickness

[Adapted from QA-4949]

8.4.4 Mix

@startuml

title Bracketed line style mix

node foo

foo --> bar :

foo —[#red,thickness=1]-> barl . [#red,1]

foo —[#red,dashed,thickness=2]-> bar?2 : [#red,dashed,?2]
foo -[#green,dashed,thickness=4]-> bar3 : [#green,dashed,4]
foo —[#blue,dotted,thickness=8]-> bar4 : [blue,dotted,8]
foo -[#blue,plain,thickness=16]-> bar5 : [blue,plain,16]
foo -[#blue;#green,dashed,thickness=4]-> bar6 : [blue;green,dashed,4]
@enduml

Bracketed line style mix

-
lue, plain, 16] \iblue;green,dashed,d-]

bar bar1 bar2 bar3 bard bars barG

8.5 Change arrow color and style (inline style)
You can change the color or style of individual arrows using the inline following notation:
e #color;line.[bold|dashed|dotted] ;text:color

@startuml

node foo

foo --> bar : normal

foo --> barl #line:red;line.bold;text:red : red bold

foo --> bar2 #green;line.dashed;text:green : green dashed
foo --> bar3 #blue;line.dotted;text:blue : blue dotted
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 184 / 580

8.6 Change element color and style (inline style) 8 DIAGRAMME DE DEPLOIEMENT

foo

\

. 5
normal fred bold \green dashed . blue dotted

i
)

‘_—
A

P Pt P ™
| 1 I 1 [1]
L R L -
bar bar1 bar2 bar3

[Ref. QA-3770 and QA-3816] [See similar feature on class diagram]

8.6 Change element color and style (inline style)
You can change the color or style of individual element using the following notation:
e #[colorlback:color];line:color;line. [bold|dashed|dotted] ;text:color

@startuml

agent a

cloud c #pink;line:red;line.bold;text:red

file f #palegreen;line:green;line.dashed;text:green
node n #aliceblue;line:blue;line.dotted;text:blue
@enduml

...........

@startuml

agent a

cloud c #pink;line:red;line.bold;text:red [

c

cloud description

]

file f #palegreen;line:green;line.dashed;text:green {
[c1]

[c2]

}

frame frame {

node n #aliceblue;line:blue;line.dotted;text:blue
}

@enduml

c
E| cloud description

[Ref. QA-6852]

§

Guide de référence du langage PlantUML (1.2025.0)

185 / 530

8.7 Nestable elements

8 DIAGRAMME DE DEPLOIEMENT

8.7 Nestable elements

Here are the nestable elements:

@startuml

action action {

}

artifact artifact {
}

card card {

}

cloud cloud {

}

component component {
}

database database {
}

file file {

}

folder folder {

}

frame frame {

}

hexagon hexagon {

}

node node {

}

package package {

}

process process {

}

queue queue {

}

rectangle rectangle {
}

stack stack {

}

storage storage {

}

Q@enduml

e e e N P

8.8 Packages and nested elements
8.8.1 Example with one level

@startuml

artifact artifactVeryL0000000000000000000g as

file f1
by

card cardVeryL0000000000000000000g as

file £2
}

cloud cloudVeryL0000000000000000000g as

file £3
}

component componentVeryL0000000000000000000g as

file f4

§

Guide de référence du langage PlantUML (1.2025.0)

— P — package

"artifact" {

"card" {

"cloud" {

"component" {

) process)

|queue | |

186 / 580

==

stack

(storage)

8.8 Packages and nested elements

8 DIAGRAMME DE DEPLOIEMENT

X
database
file £5
¥

file
file £6
X

folder
file £7
by

frame
file £8
X
hexagon
file £9
3

node
file £10
X
package
file f11
3

queue
file f12
X
rectangle
file £13
X

stack
file f14
3
storage
file £15
X

@enduml

tif:]
artifagh| [card | componenT
] @]

databaseVeryL0000000000000000000g

fileVeryL0O0O0O0O000000000000000g

folderVeryL0O000000000000000000g

frameVeryL0000000000000000000g

hexagonVeryL0000000000000000000g

nodeVeryL0000000000000000000g

packageVeryL0000000000000000000g

queueVeryL0000000000000000000g

rectangleVeryL0000000000000000000g

stackVeryL0000000000000000000g

storageVeryL0000000000000000000g

database
fs

as

as

as

as

as

as

as

as

as

as

as

"database" {

"file" {

"folder" {

"frame" {

"hexagon" {

"node" {

"package" {

"queue" {

"rectangle" {

"stack" {

"storage" {

8.8.2 Other example

@startuml

artifact Fool {
folder Foo2

}

folder Foo3 {
artifact Foo4

3

frame Foo5 {

database Foo6

}

cloud vpc {
node ec2 {

§

Guide de référence du langage PlantUML (1.2025.0)

file xago node package queue rectangle
187 / 580

stack

1
fl4

storage
1

f15

8.8 Packages and nested elements

8 DIAGRAMME DE DEPLOIEMENT

stack stack

@enduml

@startuml
node Fool {

cloud Foo2
}

cloud Foo3 {
frame Foo4d

3

database Foo5 A{
storage Foo6

}

storage Foo7 {
storage Foo8
X

@enduml

Foo1 Foo3
I/I_.-.," e v, \I -
¢ Foo2 5 Food

8.8.3 Full nesting
Here is all the nested elements:
e by alphabetical order:

@startuml

action action {
artifact artifact {
card card {

cloud cloud {
component component {
database database {
file file {

folder folder {
frame frame {
hexagon hexagon {
node node {

package package {

§

Guide de référence du langage PlantUML (1.2025.0)

188 / 530

8.8 Packages and nested elements 8 DIAGRAMME DE DEPLOIEMENT

process process {
queue queue {
rectangle rectangle {
stack stack {

storage storage {

}
}
}
¥
¥
}
}
}
3
¥
}
}
}
}
¥
3
}
@

enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 189 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DEPLOIEMENT

action

artifact

card

cloud

component

database

file &

folder\,

frame

/ hexagon \

node

package \

process

queue I

rectangle

§

Guide de référence du langage PlantUML (1.2025.0) 190 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DEPLOIEMENT

e or reverse alphabetical order

@startuml

storage storage {
stack stack {
rectangle rectangle {
queue queue {

process process {
package package {
node node {

hexagon hexagon {
frame frame {

folder folder {

file file {

database database {
component component {
cloud cloud {

card card {

artifact artifact {
action action {

}
}
}
}
}
¥
¥
}
}
}
¥
¥
}
}
}
¥
¥
c]

enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 191 / 580

8.8 Packages and nested elements 8 DIAGRAMME DE DEPLOIEMENT

e ~

stack
rectangle
[queue 1
process
package \
node

hexagon \

folder

file &

database

component

artifact [™

action

§

Guide de référence du langage PlantUML (1.2025.0) 192 / 580

8.9 Alias

8 DIAGRAMME DE DEPLOIEMENT

8.9 Alias

8.9.1 Simple alias with as

@startuml

node Nodel as nl

node
file f1 as
cloud cl as
is

a

cloud"

"Node 2"
"File 1"
"this

as n2

cloud c2 [this

is
another
cloud]

nl -> n2
nl --> f1
fl1 -> c1
cl -> c2
Q@enduml

Nodet > Node 2

8.9.2 Examples of long alias

@startuml
actor
agent
artifact
boundary
card
cloud
collections
component
control
database
entity
file
folder
frame
hexagon
interface
label
node
package
person
queue

«
&« Guide de référence du langage PlantUML (1.2025.0)

"actor"
"agent"
"artifact"
"boundary"
"card"
"cloud"

"collections"

"component"
"control"
"database"
"entity"

n flle n
"folder"

n frame n
"hexagon"
"interface"
"label"
llnode n
"package"
"person"

n queue n

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

T, T N
Y 4 * this
1 Yo & L

. s) s
‘ File 1 e e
L a < .. anaother
“ cloud < L. cloud
., A L,

ha WP P

A

A,"_.'\

actorVeryL0000000000000000000g
agentVeryL0000000000000000000g
artifactVeryL0000000000000000000g
boundaryVeryL0000000000000000000g
cardVeryL0000000000000000000g
cloudVeryL0000000000000000000g
collectionsVeryL0000000000000000000g
componentVeryL0000000000000000000g
controlVeryL0000000000000000000g
databaseVeryL0000000000000000000g
entityVeryL0000000000000000000g
fileVeryL0000000000000000000g
folderVeryL0000000000000000000g
frameVeryL0000000000000000000g
hexagonVeryL.0000000000000000000g
interfaceVeryL0000000000000000000g
labelVeryL0000000000000000000g
nodeVeryL0000000000000000000g
packageVeryL0000000000000000000g
personVeryL0000000000000000000g
queueVeryL0000000000000000000g

193 / 580

8.9 Alias 8 DIAGRAMME DE DEPLOIEMENT

stack "stack" as stackVeryL0000000000000000000g
rectangle "rectangle" as rectangleVeryL0000000000000000000g
storage "storage" as storageVeryL0000000000000000000g
usecase "usecase" as usecaseVeryL0000000000000000000g
@enduml
—I_ agent artifacta‘ F— | card |
AN boundary
actor
f'.-(’ -\"N--\,.-__\I ‘ lecti h ‘ EI‘ |'J{-t'| J.-:__ - __:
“ cloud ¢ collections h—y ‘ T
[) nt
S ———— | comeene control Jatabase |
O il < hexagon >
Em e folder | frame ey E)(,EI'QDI"I
] | packageVeryL0000000000000000000g ', O
O |abel ()
. ape node | package | | person |
interface - -
{ ™ o M] - - =, e R -
| queue | | stack ‘ rectangle |_storage (_usecase)
@startuml
actor actorVeryL0000000000000000000g as "actor"
agent agentVeryL0000000000000000000g as "agent"

artifact artifactVeryL0000000000000000000g as "artifact"
boundary boundaryVeryL0000000000000000000g as "boundary"
card cardVeryL0000000000000000000g as "card"

cloud cloudVeryL0000000000000000000g as "cloud"
collections collectionsVeryL0000000000000000000g as "collections"
component componentVeryL0000000000000000000g as "component'

control controlVeryL0000000000000000000g as "control"
database databaseVeryL0000000000000000000g as "database"
entity entityVeryL0000000000000000000g as "entity"
file fileVeryL0O0O0O0O000000000000000g as "file"
folder folderVeryL0000000000000000000g as "folder"
frame frameVeryL0000000000000000000g as "frame"
hexagon hexagonVeryL0000000000000000000g as "hexagon"
interface interfaceVeryL0000000000000000000g as "interface"
label labelVeryL0000000000000000000g as "label"
node nodeVeryL0000000000000000000g as '"node"
package packageVeryL.0000000000000000000g as "package"
person personVeryL0000000000000000000g as "person"
queue queueVeryL0000000000000000000g as '"queue"
stack stackVeryL0000000000000000000g as "stack"
rectangle rectangleVeryL0000000000000000000g as "rectangle"
storage storageVeryL0000000000000000000g as "storage"

§

Guide de référence du langage PlantUML (1.2025.0) 194 / 580

8.10 Round corner 8 DIAGRAMME DE DEPLOIEMENT

usecase usecaseVeryL0000000000000000000g as '"usecase"
Q@enduml
T Ty
|
agent | | antae)|
SN boundary
actor

A

P . a ¢ =
> cloud 5 collections I component o;r;tjrfol [database ‘

"*.1_,_,\ oy

*

' - -
e frame =._hexagon -
entity
. | packageVeryLOOOOOOO000000000000g O
@] label o ()
) package | person |
interface -
—] r/"'_ - _""'\ T T
| queue | | stack rectangle | storage (_usecase)
[Ref. QA-12082]
8.10 Round corner
O@startuml
skinparam rectangle {
roundCorner<<Concept>> 25
}
rectangle "Concept Model" <<Concept>> {
rectangle "Example 1" <<Concept>> as exl
rectangle "Another rectangle"
}
@enduml
«Concept»
Concept Model
«Concepty I
Ancther rectangle ' Example 1 |
8.11 Specific SkinParameter
8.11.1 roundCorner
O@startuml
skinparam roundCorner 15
actor actor
¢
Guide de référence du langage PlantUML (1.2025.0) 195 / 580

8.12 Appendix: All type of arrow line 8 DIAGRAMME DE DEPLOIEMENT

agent agent
artifact artifact
boundary boundary
card card

circle circle

cloud cloud
collections collections
component component
control control
database database
entity entity

file file

folder folder

frame frame

hexagon hexagon
interface interface
label label

node node

package package
person person

queue queue
rectangle rectangle
stack stack

storage storage
usecase usecase

@enduml
Ii_/l
—I— ’) i M| () —_— _
\awm ‘mhm ‘ et | card | O
SN - - —_ boundary ____ i
actor circle
0) [cotectons ‘ 9 O .5 0O
) Sl) component - S~
S \ . . control »-qa_tﬁaﬁ?-’ entity
; : " /"'/ """'-» P
fle | | frame <. hexagon -~ label
- S
g g interface
- “ I/_.\'I
[" \ —_ —
package ' et lr————7x] |
L ueue | | rectangle stack
node .) pemon| \queus | ") g)
h. -~
TN — T,
\ storage) {_1__1_159*::359___'_}

[Ref. QA-5299, QA-6915, QA-11943]

8.12 Appendix: All type of arrow line
O@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 196 / 580

8.13 Appendix: All type of arrow head or °0’ arrow

8 DIAGRAMME DE DEPLOIEMENT

left to right direction
skinparam nodesep 5

f3 ~~ b3
f2 .. b2
fi1 == Dbl
f0O -- b0
@enduml

8.13 Appendix: All type of arrow head or ’0’ arrow

nno.n "\n//dotted//
", . ""\n//dashed//
"M==""\n//bold//
"M—-""\n//plain//

fb - Sb
f; t;H
P T _dg.éﬁeg Ty
: ow
(oo dotted
fé Eé

8.13.1 Type of arrow head

@startuml

left to right direction
skinparam nodesep 5

f13 --0
f12 --@
f11 -——:|>
£10 ——||>
f9 —--|>
f8 -7
7 --\\
f6 --#
f5 ——+
f4 --o
£f3 ——x
f2 -->>
f1 -
f0 -
@enduml

§

bl3 :
bl2 :
bill :
b10 :

b9
b8
b7
b6
b5
b4
b3
b2
b1
bOo

nn__qgnn
nn__@nn
uu__:|>nu
uu__||>nu
uu__|>un

uu__\\\\uu
nn__g onn
nn__4p nn
nn__q nn

HN__y nn
nn__ssnn
nn__s nn

plain

Guide de référence du langage PlantUML (1.2025.0)

197 / 580

8.13 Appendix: All type of arrow head or °0’ arrow

8 DIAGRAMME DE DEPLOIEMENT

O — O
fo b0
P _— —

. }:_ |
f1 b1
Py —_— —

I_/ = L_]
f2 b2
"0
fa b3
o =0 -

K_)__________________<>K_'
4 ba
' -+ T
L WAL
fa b5
i —# iy
'_,'—E]_/'
f& b6
P =l z—

[} _ _]
7 b7

fa b8
P el [:: —
L L/
fa b9
o | |I:: P!
[, ./
f10 b10
—, —= ™ —
L . L/
f11 b11
——@ o0
f12 b12
T -0 o
I_/'—O_]
f13 b13

8.13.2 Type of ’0’ arrow or circle arrow

@startuml

left to right direction
skinparam nodesep 5

£10 0--0 b10 :
f9)—-(C b9 :
£8 0)--(0 b8 :
£7 0)-- b7
f6 -0)- b6
£5 -(0)- b5

§

0--0 "
)=
0)--(0""
0)-- "
O) nn
_(O>_nu

Guide de référence du langage PlantUML (1.2025.0)

198 / 530

8.14 Appendix:

Test of inline style on all element

8 DIAGRAMME DE DEPLOIEMENT

f4 -(0- b4
£f3 --(0 b3
f2 ——(b2
f1 --0 bl
Q@enduml

nn

P —-’D e
L O_x
1 b1
Y —t I(If‘\l
S LN
f2 b2
P = 'D —y
: @
3 b3
_ +0-
I f Y
et LA .
f4 b4
T -“:”- Fo
L {O} b
1] b5
_ -0 _
o 9)
et b b
fé b6
i D - o
) . C
7 b7
o 0}--(0 —,
O—"—@
f& b&
Y)—({Iz'\
A L
fa b9
- 0-0

f10

8.14 Appendix: Test of inline style on all element

8.14.1 Simple element

@startuml
action action
actor actor
actor/ "actor/"
agent agent

artifact artifact
boundary boundary

card card
circle circle
cloud cloud

collections collections

component component

control control

database database

entity entity
file file

§

#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line
#aliceblue;line

:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.
:blue;line.

Guide de référence du langage PlantUML (1.2025.0)

dotted;text:
:blue
:blue
:blue
:blue
:blue
:blue
:blue
:blue
:blue

dotted;text
dotted;text
dotted;text
dotted;text
dotted;text
dotted;text
dotted;text
dotted;text
dotted;text

dotted;text:
:blue
:blue
:blue
:blue

dotted;text
dotted;text
dotted;text
dotted;text

blue

blue

199 / 580

8.14 Appendix: Test of inline style on all element

8 DIAGRAMME DE DEPLOIEMENT

folder folder #aliceblue;line:blue;line.dotted;text:blue
frame frame #aliceblue;line:blue;line.dotted;text:blue
hexagon hexagon #aliceblue;line:blue;line.dotted;text:blue
interface interface #aliceblue;line:blue;line.dotted;text:blue
label label #aliceblue;line:blue;line.dotted;text:blue
node node #aliceblue;line:blue;line.dotted;text:blue
package package #aliceblue;line:blue;line.dotted;text:blue
person person #aliceblue;line:blue;line.dotted;text:blue
process process #aliceblue;line:blue;line.dotted;text:blue
queue queue #aliceblue;line:blue;line.dotted;text:blue
rectangle rectangle #aliceblue;line:blue;line.dotted;text:blue
stack stack #aliceblue;line:blue;line.dotted;text:blue
storage storage #aliceblue;line:blue;line.dotted;text:blue
usecase usecase #aliceblue;line:blue;line.dotted;text:blue
usecase/ "usecase/" #aliceblue;line:blue;line.dotted;text:blue
Q@enduml
action agent | artifact . = -
... boundary
actor actor/
lllllllllll _ ES
— . cloud collections O
"""""") jEceEeeEeeeneeeee control
circle
database | - - | file folder . frame Ll
R - entity s T o
label pECkEgE --------------------- process
,,,,,,,,,,,,,,,,,,,,,,,,, person AN
interface 0 T
queue rectangle stack :_storagel _usecase . usecase/ ¥
8.14.2 Nested element
8.14.3 Without sub-element
@startuml
action action #aliceblue;line:blue;line.dotted;text:blue {
}
artifact artifact #aliceblue;line:blue;line.dotted;text:blue {
}

card card #aliceblue;line:blue;line.dotted;text:blue {
}

cloud cloud #aliceblue;line:blue;line.dotted;text:blue {
}

component component #aliceblue;line:blue;line.dotted;text:blue {

§

Guide de référence du langage PlantUML (1.2025.0)

200 / 580

8.14 Appendix: Test of inline style on all element

8 DIAGRAMME DE DEPLOIEMENT

}

database database #aliceblue;line:blue;line.dotted;text:blue {

3

file file #aliceblue;line:blue;line.dotted;text:blue {

3

folder folder #aliceblue;line:blue;line.dotted;text:blue {

}

frame frame #aliceblue;line:blue;line.dotted;text:blue {

3

hexagon hexagon #aliceblue;line:blue;line.dotted;text:blue {

}

node node #aliceblue;line:blue;line.dotted;text:blue {

}

package package #aliceblue;line:blue;line.dotted;text:blue {

3

process process #aliceblue;line:blue;line.dotted;text:blue {

}

queue queue #aliceblue;line:blue;line.dotted;text:blue {

3

rectangle rectangle #aliceblue;line:blue;line.dotted;text:blue {

3

stack stack #aliceblue;line:blue;line.dotted;text:blue {

}

storage storage #aliceblue;line:blue;line.dotted;text:blue {

3

@enduml

| action | artifact

| card cloud

8.14.4 With sub-element

@startuml
action
file f1
}
artifact
file f1
}

card
file 2
}

cloud
file £3
}
component
file f4
}
database
file f5
}

file
file f6
}
folder
file £7
}

frame

actionVeryL0000000000000000000g

artifactVeryL0000000000000000000g

cardVeryL0000000000000000000g

cloudVeryL0000000000000000000g

componentVeryL0000000000000000000g

databaseVeryL0000000000000000000g

fileVeryL0O000000000000000000g

folderVeryL0000000000000000000g

frameVeryL0000000000000000000g

| component database (M folder | frame

as

as

as

as

as

as

as

as

as

«
&« Guide de référence du langage PlantUML (1.2025.0)

hexagon ol process queue: | rectangle | stack { storage

"action" #aliceblue;line:blue;line.dotted;text:b

"artifact" #aliceblue;line:blue;line.dotted;text

"card" #aliceblue;line:blue;line.dotted;text:blu

"cloud" #aliceblue;line:blue;line.dotted;text:bl:

"component" #aliceblue;line:blue;line.dotted;tex

"database" #aliceblue;line:blue;line.dotted;text

"file" #aliceblue;line:blue;line.dotted;text:blu

"folder" #aliceblue;line:blue;line.dotted;text:b

"frame" #aliceblue;line:blue;line.dotted;text:bl:

201 / 530

8.15 Appendix: Test of style on all element

8 DIAGRAMME DE DEPLOIEMENT

file £8
by
hexagon
file £9
b

node
file £10
X
package
file f11
3
process
file f11
3

queue
file £12
X
rectangle
file £13
¥

stack
file f14
X
storage
file £15
by

@enduml

hexagonVeryL0000000000000000000g as

nodeVeryL0000000000000000000g as

packageVeryL0000000000000000000g as

processVeryL0000000000000000000g as

queueVeryL0000000000000000000g as

rectangleVeryL0000000000000000000g as

stackVeryL0000000000000000000g as

storageVeryL0000000000000000000g as

i action

e

card database

cloud © | component

process NG) 3 ; 4

8.15 Appendix: Test of style on all element
8.15.1 Simple element
8.15.2 Global style (on componentDiagram)

@startuml

<style>

componentDiagram {
BackGroundColor palegreen
LineThickness 1
LineColor red

}

document {
BackGroundColor white

}

</style>

actor actor

actor/ "actor/"

agent agent

artifact artifact

boundary boundary

card card

circle circle

cloud cloud

collections collections

component component

«
&« Guide de référence du langage PlantUML (1.2025.0)

‘frame

"hexagon" #aliceblue;line:blue;line.dotted;text:]

"node" #aliceblue;line:blue;line.dotted;text:blu

"package" #aliceblue;line:blue;line.dotted;text:]

"process" #aliceblue;line:blue;line.dotted;text:]

"queue" #aliceblue;line:blue;line.dotted;text:bl:

"rectangle" #aliceblue;line:blue;line.dotted;tex

"stack" #aliceblue;line:blue;line.dotted;text:bl:

"storage" #aliceblue;line:blue;line.dotted;text:]

rectangle |

1
f3 H

queue storage
|

i|ns

istack

hexagon

][]

oo
|f12'

202 / 530

8.15 Appendix: Test of style on all element

8 DIAGRAMME DE DEPLOIEMENT

control control
database database
entity entity

file file

folder folder

frame frame

hexagon hexagon
interface interface
label label

node node

package package
person person

queue queue
rectangle rectangle
stack stack

storage storage
usecase usecase
usecase/ "usecase/"

@enduml

agent‘

artifact

§

actor actor/

circle

O ==

boundary

:
O rome | < henagon >
ey

label node

8.15.3 Style for each element

@startuml

<style>

actor {
BackGroundColor #£80c12
LineThickness 1
LineColor black

}

agent {
BackGroundColor #£80c12

§

Guide de référence du langage PlantUML (1.2025.0)

| g9 O
P control ditiafe

@)

interface

]

203 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

LineThickness 1
LineColor black

}

artifact {
BackGroundColor #eel1100
LineThickness 1
LineColor black

}

boundary {
BackGroundColor #eel100
LineThickness 1
LineColor black

}

card {
BackGroundColor #ff3311
LineThickness 1
LineColor black

}

circle {
BackGroundColor #f£3311
LineThickness 1
LineColor black

}

cloud {
BackGroundColor #ff4422
LineThickness 1
LineColor black

}

collections {
BackGroundColor #£ff4422
LineThickness 1
LineColor black

}

component {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}

control {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}

database {
BackGroundColor #£ff£9933
LineThickness 1
LineColor black

}

entity {
BackGroundColor #feae2d
LineThickness 1
LineColor black

}

file {
BackGroundColor #feae2d
LineThickness 1
LineColor black

}

«
&« Guide de référence du langage PlantUML (1.2025.0) 204 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

folder {
BackGroundColor #ccbb33
LineThickness 1
LineColor black

}

frame {
BackGroundColor #d0c310
LineThickness 1
LineColor black

}

hexagon {
BackGroundColor #aacc22
LineThickness 1
LineColor black

}

interface {
BackGroundColor #69d025
LineThickness 1
LineColor black

}

label {
BackGroundColor black
LineThickness 1
LineColor black

}

node {
BackGroundColor #22ccaa
LineThickness 1
LineColor black

}

package {
BackGroundColor #12bdb9
LineThickness 1
LineColor black

}

person {
BackGroundColor #1llaabb
LineThickness 1
LineColor black

}

queue {
BackGroundColor #1laabb
LineThickness 1
LineColor black

}

rectangle {
BackGroundColor #4444dd
LineThickness 1
LineColor black

}

stack {
BackGroundColor #3311bb
LineThickness 1
LineColor black

}

storage {
BackGroundColor #3bOcbd
LineThickness 1

«
&« Guide de référence du langage PlantUML (1.2025.0) 205 / 580

8.15 Appendix: Test of style on all element

8 DIAGRAMME DE DEPLOIEMENT

LineColor black
}
usecase {
BackGroundColor #442299
LineThickness 1
LineColor black
}
</style>
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

206 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

o B Bl

actor actor/

° B [O &
control

circle

P
EERER RG>

interface

« [B o = [

] @ e ey

[Ref. QA-13261]

8.15.4 Nested element (without level)

8.15.5 Global style (on componentDiagram)

@startuml
<style>
componentDiagram {

BackGroundColor palegreen

LineThickness 2
LineColor red

}

</style>

artifact artifact {
}

card card {

}

cloud cloud {

3

component component {

3

database database {
}

file file {

}

folder folder {

}

frame frame {

3

hexagon hexagon {

3

Guide de référence du langage PlantUML (1.2025.0) 207 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

}

node node {

}

package package {
}

queue queue {

}

rectangle rectangle {
}

stack stack {

}

storage storage {
}

@enduml

- Panass | I
artilactm| [card » oloud | ‘ component s folder

8.15.6 Style for each nested element

— P N P a— package | R — — —
frame <_hexagon > m ‘ | queue| | stack. (_storage)

_database

@startuml

<style>

artifact {
BackGroundColor #eel100
LineThickness 1
LineColor black

}

card {
BackGroundColor #£f£f3311
LineThickness 1
LineColor black

}

cloud {
BackGroundColor #ff4422
LineThickness 1
LineColor black

}

component {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}

database {
BackGroundColor #ff£9933
LineThickness 1
LineColor black

}

file {
BackGroundColor #feae2d
LineThickness 1
LineColor black

}

folder {
BackGroundColor #ccbb33
LineThickness 1
LineColor black

}

frame {

§

Guide de référence du langage PlantUML (1.2025.0) 208 / 580

8.15 Appendix: Test of style on all element

8 DIAGRAMME DE DEPLOIEMENT

BackGroundColor #d0c310
LineThickness 1
LineColor black

}

hexagon {
BackGroundColor #aacc22
LineThickness 1
LineColor black

}

node {
BackGroundColor #22ccaa
LineThickness 1
LineColor black

}

package {
BackGroundColor #12bdb9
LineThickness 1
LineColor black

}

queue {
BackGroundColor #1laabb
LineThickness 1
LineColor black

}

rectangle {
BackGroundColor #4444dd
LineThickness 1
LineColor black

}

stack {
BackGroundColor #3311bb
LineThickness 1
LineColor black

}

storage {
BackGroundColor #3bOcbd
LineThickness 1
LineColor black

}

</style>

artifact artifact {
}

card card {

}

cloud cloud {

}

component component {
}

database database {
}

file file {

}

folder folder {

}

frame frame {

}

hexagon hexagon {

«
&« Guide de référence du langage PlantUML (1.2025.0)

209 / 580

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

}

node node {

}

package package {
}

queue queue {

}

rectangle rectangle {
}

stack stack {

}

storage storage {
}

@enduml

@ (R =
"X LI Sl K

8.15.7 Nested element (with one level)
8.15.8 Global style (on componentDiagram)

@startuml

<style>

componentDiagram {
BackGroundColor palegreen
LineThickness 1
LineColor red

}

document {
BackGroundColor white

}

</style>

artifact el as "artifact" {

file f1

}

card e2 as "card" {

file 2

}

cloud e3 as "cloud" {

file £3

}

component e4 as "component" {

file f4

}

database e5 as "database" {

file f5

}

file e6 as "file" {

file f6

}

folder e7 as "folder" {

file £7

}

frame e8 as "frame" {

file £8

}

hexagon €9 as "hexagon" {

file f9

§

Guide de référence du langage PlantUML (1.2025.0) 210 / 580

8.15 Appendix: Test of style on all element

8 DIAGRAMME DE DEPLOIEMENT

}

node el0 as "node" {

file £10

¥

package ell as "package" {
file f11

}

queue el2 as "queue" {
file f12

¥

rectangle el3 as "rectangle" {
file £13

}

stack el4 as "stack" {
file f14

}

storage elb as "storage" {
file £15

}

Q@enduml

[package

queue

A

|

rectangle

8.15.9 Style for each nested element

@startuml

<style>

artifact {
BackGroundColor #eel100
LineThickness 1
LineColor black

}

card {
BackGroundColor #ff3311
LineThickness 1
LineColor black

}

cloud {
BackGroundColor #ff4422
LineThickness 1
LineColor black

}

component {
BackGroundColor #ff6644
LineThickness 1
LineColor black

}

database {
BackGroundColor #ff£9933
LineThickness 1
LineColor black

}

file {
BackGroundColor #feae2d
LineThickness 1

§

Guide de référence du langage PlantUML (1.2025.0)

m {q:“:é compune%l database file m xagon\\ node
\

o] =] | =] =]
/
\z\,\»j R /

211 / 580

stack

storage \
|
md

8.15 Appendix: Test of style on all element 8 DIAGRAMME DE DEPLOIEMENT

LineColor black

}

folder {
BackGroundColor #ccbb33
LineThickness 1
LineColor black

}

frame {
BackGroundColor #d0c310
LineThickness 1
LineColor black

}

hexagon {
BackGroundColor #aacc22
LineThickness 1
LineColor black

}

node {
BackGroundColor #22ccaa
LineThickness 1
LineColor black

}

package {
BackGroundColor #12bdb9
LineThickness 1
LineColor black

}

queue {
BackGroundColor #1laabb
LineThickness 1
LineColor black

}

rectangle {
BackGroundColor #4444dd
LineThickness 1
LineColor black

}

stack {
BackGroundColor #3311bb
LineThickness 1
LineColor black

}

storage {
BackGroundColor #3bOcbd
LineThickness 1
LineColor black

}

</style>

artifact el as "artifact" {

file f1

}

card e2 as "card" {

file f2

}

cloud e3 as "cloud" {

file £3

}

component e4 as "component" {

«
&« Guide de référence du langage PlantUML (1.2025.0) 212 / 580

8.16 Appendix: Test of stereotype with style on all element 8 DIAGRAMME DE DEPLOIEMENT

file f4

}

database eb5 as "database" {
file £5

3

file e6 as "file" {

file f6

}

folder e7 as "folder" {
file £7

}

frame e8 as "frame" {

file £8

3

hexagon €9 as "hexagon" {
file £9

}

node el0 as "node" {

file £10

¥

package ell as "package" {
file f11

}

queue el2 as "queue" {
file f12

¥

rectangle el3 as "rectangle" {
file £13

}

stack el4 as "stack" {
file f14

3

storage elb5 as "storage" {
file f15

}

@enduml

AAGECLEEZEIEEAE0

8.16 Appendix: Test of stereotype with style on all element

8.16.1 Simple element

@startuml
<style>
.stereo {

BackgroundColor palegreen
}
</style>
actor actor << stereo >>
actor/ "actor/" << stereo >>
agent agent << stereo >>
artifact artifact << stereo >>
boundary boundary << stereo >>
card card << stereo >>
circle circle << stereo >>

§

Guide de référence du langage PlantUML (1.2025.0) 213 / 580

8.16 Appendix: Test of stereotype with style on all element 8 DIAGRAMME DE DEPLOIEMENT

cloud cloud << stereo >>
collections collections << stereo >>
component component << stereo >>
control control << stereo >>
database database << stereo >>
entity entity << stereo >>

file file << stereo >>

folder folder << stereo >>

frame frame << stereo >>

hexagon hexagon << stereo >>
interface interface << stereo >>
label label << stereo >>

node node << stereo >>

package package << stereo >>
person person << stereo >>

queue queue << stereo >>
rectangle rectangle << stereo >>
stack stack << stereo >>

storage storage << stereo >>
usecase usecase << stereo >>
usecase/ "usecase/" << stereo >>

Q@enduml
wsterson wsteraos
«S!Eﬂ;u»
wstere: «shyuo» wstereon
agent artifact card
AN 7N boundary
actor actor/
T T e
wstareos A T | wstereon
[d S
o ¢ «stereor) wstereos wstereos & P—
g L cloud collections combonent Ly
circle S »_,uj P control &_c_la_lﬂaf-gf
wstereoy e . e «stereoy
Y wstereos T // «stereor ®
Ny file frame “._hexagon // .
entity interface
N
IE ol ~ f—f'
wstereo» wstaraoy o |ﬂstsrso» | wstereoy
label T askxbos | queue ectangle
person |
-
AT
wstereo» («stereo» | ﬂs&ﬁso» wshwsj;/%j
stack storage / USGGESB K usecase
\Zomas/ —
¢
& Guide de référence du langage PlantUML (1.2025.0) 214 / 580

8.17 Display JSON Data on Deployment diagram

8 DIAGRAMME DE DEPLOIEMENT

8.17 Display JSON Data on Deployment diagram

8.17.1 Simple example

O@startuml
allowmixing

component Component

actor Actor
usecase Usecase
O Interface
node Node
cloud Cloud
json JSON {

"fruit":"Apple",

"size":"Large",

"color": ["Red", "Green"]
}

@enduml

~ Node

JSON
fruit | Apple
size |Large

color | Red

Green

[Ref. QA-15/81]

For another example, see on JSON page.

8.18 Mixing Deployment (Usecase, Component, Deployment) element within

a Class or Object diagram

In order to add a Deployment element or a State element within a Class or Object diagram, you can use

the allowmixing or allow_mixing directive.

8.18.1 Mixing all elements

@startuml
allowmixing

skinparam nodesep 10

abstract abstract
abstract class "abstract class"
annotation annotation

§

Guide de référence du langage PlantUML (1.2025.0)

215 / 530

8.18 Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object

diagram 8 DIAGRAMME DE DEPLOIEMENT
circle circle

O circle_short_form
class class

diamond diamond

<> diamond_short_form
entity entity

enum enum

exception exception
interface interface
metaclass metaclass

protocol protocol
stereotype stereotype

struct struct

object object
map map {

key => value

}

json JSON {

"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}
action action
actor actor
actor/ "actor/"
agent agent
artifact artifact
boundary boundary
card card
circle circle
cloud cloud
collections collections
component component
control control
database database
entity entity
file file
folder folder
frame frame
hexagon hexagon
interface interface
label label
node node
package package
person person
process process
queue queue
rectangle rectangle
stack stack
storage storage
usecase usecase
usecase/ "usecase/"
state state
Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 216 / 580

8.19 Port [port, portIn, portOut]

8 DIAGRAMME DE DEPLOIEMENT

®) abstract| |(B) abstract class| |@annotation O

circle circle_short form

& ®)entity| (@ enum @ exception (T interface| |(M)metaclass

JSON

color | Red
Green

.-’ﬁ\
% agent ‘ o 7O |:| { cloud || collections
AN boundary ,«J’

actor/

9L
component
oontrol
|/_\|
label package / Y) process \'\-I ueue| |
noida | person | /P / \queusl
. A

e -

a N state
stack \ftomge) fxﬂ_u_s_.ecas% > C LiSECESEJ’ / H

4

[Ref. QA-2335 and QA-5329]

8.19 Port [port, portln, portOut]

You can added port with port, portinand portout keywords.

8.19.1 Port

@startuml

node node {
port pil
port p2
port p3
file f1

Guide de référence du langage PlantUML (1.2025.0)

fruit | Apple —, %
stereotype @WUC‘ map size |Large action
value SN

s .

actor

ﬁle—‘ P frame ‘ ,hexagon/

‘ rectangle

217 / 580

8.19 Port [port, portIn, portOut]

8 DIAGRAMME DE DEPLOIEMENT

c -—>pl
c -—> p2
c —-—> p3
pl -——> f1
p2 -—> f1
Q@enduml

8.19.2 Portln

O@startuml

[c]

node node {
portin pl
portin p2
portin p3
file f1

c -—>pl
c --> p2
c ——> p3
pl -—> f1
p2 --> f1
@enduml

8.19.3 PortOut

O@startuml

node node {
portout pl
portout p2

§

Guide de référence du langage PlantUML (1.2025.0)

218 / 530

8.19 Port [port, portIn, portOut] 8 DIAGRAMME DE DEPLOIEMENT

portout p3
file f1

I

[o]

pl -—> o

p2 -=> o

p3 ——> o

f1 ——> pl

@enduml

8.19.4 Mixing PortIn & PortOut

@startuml

[i]

node node {
portin pl
portin p2
portin p3
portout pol
portout po2
portout po3

file f1
X
[o]
i-->p1
i-->p2
i-->p3
pl ——> f1
p2 -—> f1
pol --> o
po2 --> o
po3 -=> o
f1 —-> pol
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 219 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DEPLOIEMENT

8.20 Change diagram orientation
You can change (whole) diagram orientation with:
e top to bottom direction (by default)

e left to right direction

8.20.1 Top to bottom (by default)
8.20.2 With Graphviz (layout engine by default)
The main rule is: Nested element first, then simple element.

@startuml
card a
card b
package A {
card al
card a2
card a3
card a4
card ab
package sub_a {
card sal
card sa?2
card sa3
}
}

package B {
card bl
card b2
card b3
card b4
card bb
package sub_b {
card sbl
card sb2

§

Guide de référence du langage PlantUML (1.2025.0) 220 / 580

8.20 Change diagram orientation

8 DIAGRAMME DE DEPLOIEMENT

card sb3
}
}

Q@enduml

o

sub_b}

|a1| |a2| |33| |sa1| |sa2|

| sb1 |

| st2 |

|533|

| sb3 |

8.20.3 With Smetana (internal layout engine)
The main rule is the opposite: Simple element first, then nested element.

@startuml
!pragma layout smetana
card a
card b
package A {
card al
card a2
card a3
card a4
card ab
package sub_a {
card sal
card sa?2
card sa3
}
}

package B {
card bl
card b2
card b3
card b4
card bb
package sub_b {
card sbl
card sb2
card sb3
}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

221 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DEPLOIEMENT

o) 5\
sub_a\ sub_b\
a| [b]|[a1] [a2] [a3]|[sat] [sa2||[|[b1] [b2] [b3]|[sb1] [sb2]

sas | [s3

8.20.4 Left to right
8.20.5 With Graphviz (layout engine by default)

@startuml
left to right direction
card a
card b
package A {
card al
card a2
card a3
card a4
card ab
package sub_a {
card sal
card sa2
card sa3
}
}

package B {
card bl
card b2
card b3
card b4
card bb
package sub_b {
card sbl
card sb2
card sb3
¥
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 222 / 580

8.20 Change diagram orientation 8 DIAGRAMME DE DEPLOIEMENT

sh2

03]
02] 55
o1] 3

| a3 |
a2 | a5 |
Lat | [t |

8.20.6 With Smetana (internal layout engine)

@startuml
!pragma layout smetana
left to right direction
card a
card b
package A {

card al

card a2

card a3

card a4

card ab

package sub_a {

card sal

§

Guide de référence du langage PlantUML (1.2025.0) 223 / 580

8.20 Change diagram orientation

8 DIAGRAMME DE DEPLOIEMENT

card sa?2
card sa3
¥
}

package B {
card bl
card b2
card b3
card b4
card bb
package sub_b {
card sbl
card sb2
card sb3
}
}

@enduml

§

Jy

sub_b
sh2
sb1 sh3
(53]
(62] [bs]
(ot] [

Guide de référence du langage PlantUML (1.2025.0)

224 / 530

9 DIAGRAMME D’ETAT

9 Diagramme d’état

Les diagrammes d’état fournissent une représentation visuelle des différents états dans lesquels un
systeme ou un objet peut se trouver, ainsi que des transitions entre ces états. Ils sont essentiels pour
modéliser le comportement dynamique des systémes, en saisissant la maniere dont ils réagissent a différents
événements au fil du temps. Les diagrammes d’état décrivent le cycle de vie du systéme, ce qui facilite
la compréhension, la conception et I'optimisation de son comportement.

Utilisation de PlantUML pour créer des diagrammes d’état offre plusieurs avantages :

o Langage basé sur le texte: Définir et visualiser rapidement les états et les transitions sans les
inconvénients du dessin manuel.

o Efficacité et cohérence: Assurez une création de diagramme rationalisée et un controle de version
facile.

e Polyvalence: S’intégre a diverses plates-formes de documentation et prend en charge plusieurs
formats de sortie.

¢ Open-Source & Community Support: Soutenu par une communauté solide qui contribue
continuellement & ses améliorations et offre des ressources inestimables.

9.1 Exemple simple

Vous devez utiliser [*] pour le début et la fin du diagramme d’état.
Utilisez —=> pour les fleches.

O@startuml

[*] --> Statel

Statel —--> [*]

Statel : this is a string
Statel : this is another string

Statel -> State2
State2 --> [x*]

@enduml

-

' State |
| State2

‘ this is a string

\this is anather string | ps y

9.2 Autre rendu
11 est possible d’utiliser la directive hide empty description pour afficher I’état de fagon plus compact.

@startuml

hide empty description

[*] --> Statel

Statel —--> [*]

Statel : this is a string
Statel : this is another string

§

Guide de référence du langage PlantUML (1.2025.0) 225 / 580

9.3 Etat composite 9 DIAGRAMME D’ETAT

Statel -> State2
State2 -—> [x]
Q@enduml

-

|' State1 P —
this is a string —)'II\StEItEE |

.\this is another string |

9.3 Etat composite

Un état peut également étre composite. Vous devez alors le définir avec le mot-clé state et des accolades.

9.3.1 Sous-état interne

@startuml
scale 350 width
[¥] -—> NotShooting

state NotShooting {
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig
by

state Configuring {
[*] --> NewValueSelection
NewValueSelection —--> NewValuePreview : EvNewValue
NewValuePreview --> NewValueSelection : EvNewValueRejected
NewValuePreview —--> NewValueSelection : EvNewValueSaved

state NewValuePreview {
Statel -> State2
}

}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 226 / 580

9.3 Etat composite

9 DIAGRAMME D’ETAT

i NotShaating

" idle |

EvConfig |[EvCaonfig

Canfiguring

|'f New\ValuePreview -\]

—

State1 | _[State2 |

EvNewValueRejecied \EvNewWalueSaved |EvNew\'alue

" NewValueSelection |

9.3.2 Lien entre sous-états

@startuml

state A {
state X {
}
state Y {
}

}

state B {
state Z {
}

}

X -->172
Z-——>Y
@enduml

[Ref. QA-3300]

3

Guide de référence du langage PlantUML (1.2025.0)

227 / 580

9.4 Nom long 9 DIAGRAMME D’ETAT

9.4 Nom long
Vous pouvez aussi utiliser le mot-clé state pour donner un nom avec des espaces & un état.

@startuml
scale 600 width

[*] -> Statel
Statel --> State2 : Succeeded
Statel --> [*] : Aborted
State2 --> State3 : Succeeded
State2 --> [*] : Aborted
state State3 {
state "Accumulate Enough Data\nLong State Name" as longl
longl : Just a test
[*] -—> longl
longl --> longl : New Data
longl --> ProcessData : Enough Data
}
State3 --> State3 : Failed
State3 --> [*] : Succeeded / Save Result
State3 --> [*] : Aborted

@enduml

Succeeded

State3

-

Accumulate Enough Data |
Long State Name New Data

| Failed

|. Just a test)
., A

Enough Data
B S

-’)

ProcessData \

A, v

Succeeded / Save Result

§

Guide de référence du langage PlantUML (1.2025.0) 228 / 580

9.5 Historique de sous-état [[H], [H*]] 9 DIAGRAMME D’ETAT

9.5 Historique de sous-état [[H], [H*]]

Vous pouvez utiliser [H] pour I'historique et [H*] pour I'historique profond d’un sous-état.

@startuml
[¥*] -> Statel
Statel --> State2 : Succeeded
Statel --> [*] : Aborted
State2 --> State3d : Succeeded
State2 --> [*] : Aborted
state State3 {
state "Accumulate Enough Data" as longl
longl : Just a test
[*] --> longl
longl --> longl : New Data
longl --> ProcessData : Enough Data
State2 --> [H]: Resume
}
State3 --> State2 : Pause
State2 --> State3[Hx]: DeepResume
State3 --> State3 : Failed
State3 --> [*] : Succeeded / Save Result
State3 --> [*] : Aborted
Q@enduml

|/ B

State? |
o>

. Y,

borted

) Failed

Succeeded / Save Result

F,

| Accumulate Enough Data)
MNew Data

|L_ .J ust a test

Enough Data

Y

| ProcessData |

\ p.

9.6 FEtats paralléles [fork, join]

Il est possible d’afficher des états paralleles grace aux stéréotypes <<fork>> et <<join>>.

§

Guide de référence du langage PlantUML (1.2025.0) 229 / 580

9.7 Etats concurrents [~ [] 9 DIAGRAMME D’ETAT

@startuml

state fork_state <<fork>>
[*] --> fork_state
fork_state --> State2
fork_state —--> State3

state join_state <<join>>
State2 --> join_state
State3 --> join_state
join_state --> Stated
State4d —-> [*]

@enduml

A

StateE StateS

ks

Stated

H

Vous pouvez définir un état concurrent dans un état composé en utilisant le symbole -- ou || comme
séparateur.

9.7 FEtats concurrents [, ||]

9.7.1 Séparateur horizontal --

@startuml
[*] --> Active

state Active {
[*] -> NumLockOff
NumLockOff --> NumLockOn : EvNumLockPressed
NumLockOn --> NumLockOff : EvNumLockPressed
[*] -> CapsLockOff
CapsLock0ff --> CapsLockOn : EvCapsLockPressed
CapsLockOn --> CapsLock0ff : EvCapsLockPressed

[*] -> ScrollLockOff

§

Guide de référence du langage PlantUML (1.2025.0) 230 / 580

9.7 Etats concurrents [, /]

9 DIAGRAMME D’ETAT

ScrollLock0ff --> ScrollLockOn : EvCapsLockPressed
ScrollLockOn --> ScrollLock0ff : EvCapsLockPressed

3

@enduml

9.7.2 Séparateur vertical ||
@startuml

[*] --> Active

state Active {
[*] -> NumLockOff

NumLockOff --> NumLockOn :

NumLockOn --> NumLockOff
[
[*] -> CapsLockOff

Active

2 NumLockOff |

"

EvMumlLockPressed|EvMNumLockPressed

i

NumLockOn |

|

.
o CapsLockOff

i

EvCapsLockPressed |[EvCapslLockPressed

I

4
CapsLockOn

i

" ScroliLockOff |

[

EvCapsLockPressed EvCapsLockPressed

|

" ScroliLockOn |

|

EvNumLockPressed

: EvNumLockPressed

CapsLockOff --> CapsLockOn : EvCapsLockPressed
CapsLockOn --> CapsLock0ff : EvCapsLockPressed

[
[¥] -> ScrollLockOff

ScrollLock0ff --> ScrollLockOn : EvCapsLockPressed
ScrollLockOn --> ScrollLockOff : EvCapsLockPressed

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

231 / 580

9.8 Conditionnel [choice] 9 DIAGRAMME D’ETAT

Active

s

-
' CapsLockOff

J
e -

-

NumLockOff

. fs(;ro|||_ockoﬁ\

",
o,

i

|
.
i

-

CapslLockOn

-

-

NumLockOn | ScrollLockOn |

, !
"o A

| |
| |
| |
| |
| |
EvNumLockPressed|EvM umLockF’resseF EvCapslLockPressed EvCapsLockPresse? EvCapsLockPressed|EvCapsLockPressed
| |
| |
| |
| |

|
1
|

[Ref. QA-3086]

9.8 Conditionnel [choice]

Le stéréotype <<choice>> peut étre utilisé pour signifier des états conditionnels.

@startuml

state "Req(Id)" as Reqld <<sdlreceive>>
state "Minor(Id)" as MinorId

state "Major(Id)" as MajorId

state c¢ <<choice>>

Idle --> Reqld

Reqld --> ¢

¢ —-> MinorId : [Id <= 10]
¢ —=> MajorId : [Id > 10]
@enduml

[id ==10]

a , o ,
4 \. s !

| Minor(id) | | Major(ld) |

[] |

. ~ g A

9.9 Exemple avec tous les stéréotypes [choice, fork, join, end]

@startuml
state choicel <<choice>>

§

Guide de référence du langage PlantUML (1.2025.0) 232 / 580

9.9 Exemple avec tous les stéréotypes [choice, fork, join, end]

9 DIAGRAMME D’ETAT

state forkl <<fork>>
state join2 <<join>>
state end3 <<end>>
[*] --> choicel :

choicel --> forkl
choicel --> join2

choicel --> end3
forkl ---> Statel :
forkl -=> State2

State2 --> join2

Statel --> [x]
join2 --> [¥]
@enduml

de

: de

: de

de

: de

[Réf. QA-404 et QA-1159]
[Ref. QA-404, QA-1159 and GH-887]

[Ref. QA-19174]

§

start""\na choice
Choicell II\né. n ||fork|| n
"“Choice" Il\na Illljoinll n

nn Choice n Il\na nn endll n

n |Iforkll n \né nn State" n
n |Iforkll n \Ilé. nn statell n

n llstatell ll\na n Iljoinll n
nn state nn \né n llendll n

jOiIl" " \na end""

de choice
aend

de choice
afork

e choice
ajoin

|, -

de fork State2
astate

h. A

e state
ajoin

|/ B

State1 |

de state
aend

de join
aend

Guide de référence du langage PlantUML (1.2025.0)

233 / 580

9.10 Petits cercles [entryPoint, exitPoint] 9 DIAGRAMME D’ETAT

9.10 Petits cercles [entryPoint, exitPoint]
Vous pouvez ajouter de petits cercles [point/ avec les stéréotypes <<entryPoint>> et <<exitPoint>> :

@startuml
state Somp {
state entryl <<entryPoint>>
state entry2 <<entryPoint>>
state sin
entryl --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<exitPoint>>

}

[*] --> entryl
exitA --> Foo
Fool -> entry2
Q@enduml

| Fool |

9.11 Petits carrés [inputPin, outputPin]
Vous pouvez ajouter de petits carrés [pin/ avec les stéréotypes <<inputPin>> et <<outputPin>> :

O@startuml
state Somp {
state entryl <<inputPin>>
state entry2 <<inputPin>>
state sin
entryl --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<outputPin>>

3

[¥*] --> entryl
exitA --> Foo
Fool -> entry2

§

Guide de référence du langage PlantUML (1.2025.0) 234 / 580

9.12 Multiples petits carrés [expansionInput, expansionOutput] 9 DIAGRAMME D’ETAT

@enduml

[Réf. QA-4309]

9.12 Multiples petits carrés [expansionIlnput, expansionOutput]

Vous pouvez ajouter de multiples petits carrés [ezpansion] avec les stéréotypes <<expansionInput>> et
<<expansionOutput>> :

@startuml
state Somp {
state entryl <<expansionInput>>
state entry2 <<expansionInput>>
state sin
entryl --> sin
entry2 -> sin
sin -> sin2
sin2 --> exitA <<expansionOutput>>

3

[¥*] --> entryl
exitA --> Foo
Fool -> entry2
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 235 / 580

9.13 Direction des fléches 9 DIAGRAMME D’ETAT

entry1 entry2 —,
Y | Fool |
AT T TT T e
Somp

| sin > sin2 |
| , |
- e
X ¥ y
. (T3
exith
A
| Foo |

[Réf. QA-4309]

9.13 Direction des fléches

Vous pouvez utiliser —=> pour les fleches horizontales. 11 est aussi possible de forcer la direction de la fleche
avec la syntaxe suivante:

e —down-> (fléche par défaut)

e -right->or —>

o —left-—>
e -up—>
@startuml

[*] -up-> First
First -right-> Second
Second --> Third
Third -left-> Last

@enduml

|/ B

[First Semnd-\]
| |

A A b

|"_ Last | '/-Third-\]
(|

4 h S

Vous pouvez aussi utiliser une notation abrégée, avec soit le premier caractere de la direction (par exemple
-d- & la place de —~down-) ou bien les deux premiers caractéres (-do-).

Veuillez noter qu’il ne faut pas abuser de cette fonction : Graphviz donne généralement de bons résultats
sans peaufinage.

§

Guide de référence du langage PlantUML (1.2025.0) 236 / 580

9.14 Changer la couleur ou le style des fleches

9 DIAGRAMME D’ETAT

9.14 Changer la couleur ou le style des fleches
Vous pouvez modifier la couleur et/ou le style des fleches.

@startuml

State S1

State S2

S1 -[#DDOOAA]-> S2

S1 -left[#yellow]-> S3

S1 -upl[#red,dashed]-> S4

S1 -right[dotted,#blue]-> S5

X1 -[dashed]-> X2
Z1 -[dotted]-> Z2
Y1 -[#blue,bold]-> Y2

@enduml

" s4 (x1) [= ' |"' Y1)
_ . |_ | | |
b - b e b - . -

§ l

| ' :
| v Y Y
[83 | |s1‘| ______ S5 | |'x2‘| |'zz' [y2 |
| | [] | | [| ([]
~ - - - b e " - -~

[Réf. Incubation: Change line color in state diagrams]

9.15 Note

Vous pouvez définir des notes avec les mots clés suivant: note left of, note right of, note top of,

note bottom of
Vous pouvez aussi définir des notes sur plusieurs lignes.
@startuml

[*] --> Active
Active —--> Inactive

note left of Active : this is a short\nnote

note right of Inactive
A note can also
be defined on
several lines

end note

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

237 / 580

9.16 Note sur un lien

9 DIAGRAMME D’ETAT

this is a short 1 _
note

Vous pouvez aussi avoir des notes flottantes.

@startuml

state foo

note "This is a floating note" as N1

@enduml

foo

9.16 Note sur un lien

.

-,

\ / several lines

‘ This is a floating note B]

A note can also

Inactive
}—-==Z be defined on

Vous pouvez ajouter une note sur un lien entre états avec le mot clé note on link.

@startuml
[*] -> Statel

Statel —--> State2
note on link

this is a state-

end note
Q@enduml

transition note

L

-'f-

o

9.17 Plus de notes

Vous pouvez mettre des notes sur les états de composite

@startuml

[*] --> NotShooting

-'f-

State1 |

N

A

| this is a state-transition note B]

r

State2 |

A

state "Not Shooting State" as NotShooting {

state

§

"Idle mode"

as Idle

Guide de référence du langage PlantUML (1.2025.0)

238 / 580

9.18 Changer les couleurs localement [Inline color] 9 DIAGRAMME D’ETAT

state "Configuring mode" as Configuring
[*x] --> Idle

Idle -—> Configuring : EvConfig
Configuring --> Idle : EvConfig

note right of NotShooting : This is a note on a composite state

o

Mot Shooting State \

1

 1dle mode
_ —=::1Thi5 is a note on a compaosite state§

Evconﬁg

|" Configuring mode |
| |

. -

@enduml

" Y,

9.18 Changer les couleurs localement [Inline color|

@startuml
state CurrentSite #pink {
state HardwareSetup #lightblue {
state Site #brown
Site -[hidden]-> Controller
Controller -[hidden]-> Devices
}
state PresentationSetup{
Groups -[hidden]-> PlansAndGraphics
}
state Trends #FFFF77
state Schedule #magenta
state AlarmSupression
X

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 239 / 580

9.19 Skinparam 9 DIAGRAMME D’ETAT

CurrentSite

HardwareSetup

. | PresentationSetup |

Groups |
-~ -, T
—_—— Trends | AlarmSupression |
Controller | |

) ! (PlansAndGraphics |
(|

- ", L s

[Réf. QA-1812]

9.19 Skinparam
Utilisez la commande skinparam pour changer la couleur et la mise en forme du texte du schéma.
Vous pouvez utiliser cette commande :

e Dans la définition du diagramme, comme pour les autres commandes,

e Dans un fichier inclus,

e Dans un fichier de configuration, renseigné dans la ligne de commande ou la tdche ANT.
Vous pouvez définir une couleur spécifique et une police d’écriture pour les états stéréotypés.

@startuml
skinparam backgroundColor LightYellow
skinparam state {
StartColor MediumBlue
EndColor Red
BackgroundColor Peru
BackgroundColor<<Warning>> 0Olive
BorderColor Gray
FontName Impact

}
[*] --> NotShooting

state "Not Shooting State" as NotShooting {
state "Idle mode" as Idle <<Warning>>
state "Configuring mode" as Configuring
[*] --> Idle
Idle --> Configuring : EvConfig
Configuring --> Idle : EvConfig

X

NotShooting --> [*]
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 240 / 580

9.20 Changement de style 9 DIAGRAMME D’ETAT

EvConﬁg

9.19.1 Test de tous les skinparam spécifiques aux diagrammes d’état:

@startuml

skinparam State {
AttributeFontColor blue
AttributeFontName serif
AttributeFontSize 9
AttributeFontStyle italic
BackgroundColor palegreen
BorderColor violet
EndColor gold
FontColor red
FontName Sanserif
FontSize 15
FontStyle bold
StartColor silver

state A : a a a\na
state B : b b b\nb

[*] -> A : start

A ->B : a2b
B -> [*] : end
@enduml
tart A azb B d
5 en
. > aaa * bbb 3'@
a b

9.20 Changement de style
Vous pouvez changer de style

@startuml

3

Guide de référence du langage PlantUML (1.2025.0) 241 / 580

9.21 Modifier la couleur et le style d’un état (style en ligne) 9 DIAGRAMME D’ETAT

<style>
stateDiagram {
BackgroundColor Peru
'LineColor Gray
FontName Impact
FontColor Red
arrow {
FontSize 13
LineColor Blue
b
}
</style>

[*] --> NotShooting

state "Not Shooting State" as NotShooting {
state "Idle mode" as Idle <<Warning>>
state "Configuring mode" as Configuring
[*] --> Idle
Idle -—> Configuring : EvConfig
Configuring --> Idle : EvConfig

}

NotShooting —-—> [*]
@enduml

[Ref. [GH-880](https://github.com/plantuml/plantuml/issues/880#issuecomment-1022278138)]

9.21 Modifier la couleur et le style d’un état (style en ligne)

Vous pouvez modifier la couleur ou le style d’un état individuel en utilisant la notation suivante

e #color ##[stylelcolor
Avec la couleur de fond d’abord (#color), puis le style de ligne et la couleur de ligne (##[stylelcolor)

¢
&« Guide de référence du langage PlantUML (1.2025.0) 242 / 580

9.21 Modifier la couleur et le style d’un état (style en ligne) 9 DIAGRAMME D’ETAT

@startuml

state FooGradient #red-green ##O0OFFFF
state FooDashed #red|green ##[dashed]lblue {
}

state FooDotted ##[dotted]blue {

}

state FooBold ##[bold] {

}

state Fool ##[dotted]lgreen {

state innerl ##[dotted]yellow

}

state out ##[dotted]gold

state Foo2 ##[bold]green {
state inner2 ##[dotted]yellow
}

innerl -> inner2

out -> inner?2

@enduml
ST ' o
Foo1 Foo2
o S o |

[Réf. QA-1487]
e #color;line:color;line. [bold|dashed|dotted] ;text:color
TODO: FIXME text:color semble ne pas étre pris en compte TODO: FIXME

@startuml

@startuml

state FooGradient #red-green;line:00FFFF
state FooDashed #red|green;line.dashed;line:blue {
}

state FooDotted #line.dotted;line:blue {
}

state FooBold #line.bold {

}

state Fool #line.dotted;line:green {
state innerl #line.dotted;line:yellow

}
state out #line.dotted;line:gold

state Foo2 #line.bold;line:green {
state inner2 #line.dotted;line:yellow
X

innerl -> inner2

out -> inner2

@enduml

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 243 / 580

9.22 Alias 9 DIAGRAMME D’ETAT

S ’ - .Y

Foo1 Foo2

inner inner2 out " FooDofted FooBold

mert | imerz | o - _ FooDoted N
S S . |

@startuml

state sl : sl description

state s2 #pink;line:red;line.bold;text:red : s2 description

state s3 #palegreen;line:green;line.dashed;text:green : s3 description
state s4 #aliceblue;line:blue;line.dotted;text:blue : s4 description
Q@enduml

e

(st) [s2) (s) | s
| - | - DV P e 8
,\31 description J Lai description J 1 83 description 34 description :

[Adapté de QA-3770)

9.22 Alias

With State you can use alias, like:

@startuml

state aliasl

state "alias2"

state "long name" as alias3
state alias4 as "long name"

aliasl : ""state aliasi""

alias2 : ""state "alias2"""

alias3 : ""state "long name" as alias3""
alias4 : ""state alias4 as "long name"""

aliasl -> alias2
alias2 -> alias3
alias3 -> alias4

@enduml

l/- ‘-\\ I/- -\l e H\ f’ -\l
| alias1 I ‘l alias2 | ‘| long name | \J long name I
.‘i;tat:-! aliasl . .\i-:t.att-z "aliaz2" ,:J .‘i;tat:-! "long name" as alias3 y, \i;tatt-z alias4 as "long name” J
or:

O@startuml

state aliasl : ""state aliasi""

state "alias2" : ""state "alias2"""

state "long name" as alias3 : ""state "long name" as alias3""

state alias4 as "long name" : ""state alias4 as "long name"""

aliasl -> alias2

alias2 -> alias3

alias3 -> alias4

@enduml

|/- ‘\ |,- -\u . ‘\ r’ -\u
| alias1 | \.l alias2 | _| long name | \J long name |
|,\i;tat[-! aliasl /J ,\::'tate slias2" JIJ |,\i;tat[-! "]long name" as alias3 /J |\i;tate aliasd as "leng name" JIJ

§

Guide de référence du langage PlantUML (1.2025.0) 244 / 580

9.23 Display JSON Data on State diagram

9 DIAGRAMME D’ETAT

[Ref. QA-1748, QA-14560]

9.23 Display JSON Data on State diagram
9.23.1 Simple example

@startuml

state "A" as stateA
state "C" as stateC {
state B

}

json jsonJ {
"fruit":"Apple",
"size":"Large",

"color": ["Red", "Green"]
}
@enduml
jsond
- fruit | Apple
A o - PP
}—‘ [B size | Large
b] color | Red
—. Green

[Ref. QA-17275]

For another example, see on JSON page.

9.24 State description

You can add description to a state or to a composite state.

@startuml
hide empty description

state sO

state "This is the State 1" as sl {
sl: State description
state s2
state s3: long descr.
state s4
s4: long descr.

3

[*] -> s0
sO --> s2

s2 -> 83
s3 -> s4
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

245 / 530

9.25

Style for Nested State Body

9 DIAGRAMME D’ETAT

[Ref.

This is the State 1

State qescription

¥

s2

"

‘\u

Ty,

Ty,

5 = | s |

J

Llnng descr. |

Llnng descr. |

QA-16719]

9.25 Style for Nested State Body

@startuml

<style>

.foo {
state,stateBody {

}
¥

BackGroundColor lightblue;

</style>

state MainState <<foo>> {
state SubA

3

@enduml

[Ref.

§

QA-16774]

Guide de référence du langage PlantUML (1.2025.0)

A

246 / 580

10 DIAGRAMME DE TEMPS

10 Diagramme de temps

Un diagramme de temps en UML est un type spécifique de diagramme d’interaction qui visualise les
contraintes de temps d’ un systéme. Il se concentre sur ’ordre chronologique des événements, en
montrant comment différents objets interagissent les uns avec les autres au fil du temps. Les diagrammes
de temps sont particulierement utiles dans les systémes en temps réel et les systémes intégrés
pour comprendre le comportement des objets pendant une période donnée.

10.1 Définitions des participants

Les participants sont déclarés a ’aide des mots-clé consise ou robust, en fonction de la fagon dont vous
souhaitez les dessiner.

o concise: Un signal simplifié congu pour montrer le déplacement des données (utile pour les mes-
sages).

e robust: Un signal linéaire complexe congu pour montrer la transition d’un état a un autre. Ce
signal peut avoir de nombreux états.

e clock: Un signal qui transitionne de fagon répétée entre les états haut et bas a rythme régulier.

o binary: Un signal spécifique restreint a seulement deux états (binaire).

Les changements d’état sont notifiés avec la notation @ et le verbe is.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

©100
WU is Waiting
WB is Processing

@300
WB is Waiting
@enduml

Web Browser/

['Waiting
Processing
ldle

: Web U se-r_._

Waiting

T
0 3

0 -
=5
(=]

] 1

[Ref. [QA-14631](https:forum.plantuml.net/14631) and [QA-14647](hitpsforum.plantuml.net/14647)]
[Ref. QA-14631, QA-14647 and QA-11288]

10.2 Horloge et signaux binaires

It’s also possible to have binary and clock signal, using the following keywords:
e binary
e clock

@startuml
clock clk with period 1

§

Guide de référence du langage PlantUML (1.2025.0) 247 / 580

10.3 Ajout de messages

10 DIAGRAMME DE TEMPS

binary "Enable" as EN

@0
EN is low

@5
EN is high

@10
EN is low
@enduml

Enable ,

—_

r
0

10.3 Ajout de messages

N =

Vous pouvez rajouter des messages a l'aide de la syntaxe suivante.

@startuml
robust "Web Browser"
concise "Web User"

as WB
as WU

@0
WU is
WB is

Idle
Idle

@100
WU ->
WU is
WB is

WB : URL
Waiting
Processing

@300
WB is Waiting
@enduml

Web Browser/

10.4 Référence relative de temps

Waiting —,—~
Processing N ! .
Idle — | | |
Web User RL
oK
T T T T 1
Li] 100 300

Avec la notation @, il est possible d’utiliser une notation relative du temps.

@startuml

robust "DNS Resolver" as DNS
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

§

Guide de référence du langage PlantUML (1.2025.0)

248 / 530

10.5 Points d’ancrage 10 DIAGRAMME DE TEMPS

DNS is Idle

©+100

WU -> WB : URL
WU is Waiting

WB is Processing

@+200
WB is Waiting
WB -> DNS@+50 : Resolve URL

©+100
DNS is Processing

@+300
DNS is Idle
@enduml

DNS Resolver/

oo]
ldle ; \ \ I) ' I_'

] " i]
;/ Resolve URL

Web Browser,/

Waiting) ' I

Processing

Idle —g
Web User RL

I(Waitin-lg

r T T T T T T T 1
0 100 300 400 700

10.5 Points d’ancrage

Au lieu d’utiliser le temps absolu ou relatif sur un temps absolu, vous pouvez définir un temps comme
point d’ancrage en utilisant le mot clé as et en commencant le nom par un :

@XX as :<anchor point name>

@startuml

clock clk with period 1
binary "enable" as EN
concise "dataBus" as db

@0 as :start

@5 as :en_high

010 as :en_low

@:en_high-2 as :en_highMinus2

Q@:start
EN is low
db is "0x0000"

Q@:en_high
EN is high

Q@:en_low
EN is low

Q@:en_highMinus2
db is "Oxf23a"

§

Guide de référence du langage PlantUML (1.2025.0) 249 / 580

10.6 Définition participant par participant 10 DIAGRAMME DE TEMPS

Q@:en_high+6
db is "0x0000"
@enduml

enable | l
dataBus/ : ; : : : : : : : 5 :
(0x0000 X 0xf23a Xmmno

T T T T T T 1
11

=
s
(%]
(5 =
-y
=

10.6 Définition participant par participant

Plutét que de déclarer le diagramme dans ’ordre chronologique, il est possible de le définir participant
par participant.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@WB

0 is idle

+200 is Proc.
+100 is Waiting

OWU

0 is Waiting
+500 is ok
@enduml

Web Browser,

Waiting

Proc. |

ide

Web User,/ | ! ! ! !
< Waiting X ok
T T T T T T 1
0 200 300 500

10.7 Choix du zoom

Il est possible de choisir une échelle d’affichage précise.

@startuml
concise "Web User" as WU
scale 100 as 50 pixels

QWU
0 is Waiting
+500 is ok
@enduml
Web User ! ! ! !
(Waiting Xolc
r T T T T T 1
0 100 200 300 400 500 600

3

Guide de référence du langage PlantUML (1.2025.0) 250 / 580

10.8 Etat initial 10 DIAGRAMME DE TEMPS

10.8 Etat initial

Vous pouvez également définir un état initial.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

QWB

0 is idle

+200 is Processing
+100 is Waiting

QWU

0 is Waiting
+500 is ok
@enduml

Web Browser/

['Waiting
Processing
idle
Initializing
: Web User,
Abse niX Waiting Xol-:
E‘ ' 2:{‘3 353 ' SE‘D '

10.9 Etat complexe
Un signal peut se trouver dans un état indéfini

@startuml

robust "Signall" as S1
robust "Signal2" as S2
S1 has 0,1,2,hello

S2 has 0,1,2

@0

S1 is O

S2 is 0

@100

S1 is {0,1} #SlateGrey
S2 is {0,1}

©200

S1 is 1

S2 is 0O

@300

S1 is hello

52 is {0,2}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 251 / 580

10.10 Hidden state 10 DIAGRAMME DE TEMPS

Signal1 ' ' ' '
Mmoo
i n I .
I 5
hello) .
Signal2/ ; ' '
0
P 111
2. i i
Ll L] L] L] 1
L] 100 200 300

[Ref. [QA-11936](https:forum.plantuml.net/11956) and [QA-15933](https:forum.plantuml.net/15933)]

10.10 Hidden state

It is also possible to hide some state.
O@startuml

concise "Web User" as WU

@0
WU is {-}

@100
WU is Al

@200
WU is {-}

@300
WU is {hidden}

@400

WU is A3

@500

WU is {-}

Q@enduml
‘Web User/ ! ! ! !
r T T T T T 1
1] 100 200 300 A00 500

[Ref. [QA-12222](https://forum.plantuml.net/12222)]

10.11 Masquer ’axe du temps
Il est possible de masquer ’axe du temps

@startuml
hide time-axis
concise "Web User" as WU

WU is Absent
QWU

0 is Waiting
+500 is ok

§

Guide de référence du langage PlantUML (1.2025.0) 252 / 580

10.12 Utilisation de I’heure et de la date 10

DIAGRAMME DE TEMPS

@enduml

[web User,”

Absent '@ ok

10.12 Utilisation de I’heure et de la date

Il est possible d’utiliser ’heure ou la date.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

©2019/07/02
WU is Idle
WB is Idle

©2019/07/04
WU is Waiting : some note
WB is Processing : some other note

©2019/07/05
WB is Waiting
Q@enduml
:Web Bro':\.vser._-': .
Waiting ——I—V"—
) some other note
Processing
[ldle — i X : N
_UUelesegf
some note
e X Waiting
T L L L 1
07102 07104 0705
@startuml

robust "Web Browser" as WB
concise "Web User" as WU

@1:15:00
WU is Idle
WB is Idle

©1:16:30
WU is Waiting : some note
WB is Processing : some other note

@1:17:30
WB is Waiting
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

253 / 580

10.13 Change Date Format

10 DIAGRAMME DE TEMPS

Web Browser/ ' ' ' '
Waiting ' '

- some other note .
Processing ! ! .
Idle 1 1 1
Web User /

! ! some note

< idle X Waiting

¥ L L
1:15:00 1:16:30 117:30

Ref. [QA-7019](https://forum.plantuml.net/7019 /hh-mm-ss-time-format-in-timing-diagram)|

10.13 Change Date Format

It is also possible to change date format.

@startuml

robust "Web Browser" as WB
concise "Web User" as WU
use date format "YY-MM-dd"
©2019/07/02

WU is Idle
WB is Idle

©2019/07/04
WU is Waiting : some note
WB is Processing :

some other note

©2019/07/05
WB is Waiting
@enduml
Web Browser/
Waiting
Processing
Idle
Web User
: some note
Idle Waiting
Ll L) L)
19-07-02 19-07-04 19-07-05

10.14 Manage time axis labels

You can manage the time-axis labels.

10.14.1 Label on each tick (by default)

@startuml

scale 31536000 as 40 pixels
use date format "yy-MM"
concise "OpenGL Desktop" as 0D

©1992/01/01
0D is {hidden}

§

Guide de référence du langage PlantUML (1.2025.0)

254 / 530

10.14 Manage time axis labels

10 DIAGRAMME DE TEMPS

@1992/06/30
0D is 1.0

©1997/03/04
0D is 1.1

©@1998/03/16
0D is 1.2

©2001/08/14
0D is 1.3

©2004/09/07
0D is 3.0

©2008/08/01
0D is 3.0

©2017/07/31
0D is 4.6

Q@enduml

[OpenGL Desktop

< XX 2 X s X

30

X

3.0

r T 1
92-01 92-12 93-12 94-12 95-12 96-12 97-12 98-12 99-12 00-12 01-12 0212 03-12 04-12 0512 06-12 07-12 08-12 0812 1012 1112 12412 1312 1412 1512 1612 17-12

10.14.2 Manual label (only when the state changes)

O@startuml
scale 31536000 as 40 pixels

manual time-axis
use date format "yy-MM"

concise "OpenGL Desktop" as 0D

©1992/01/01
0D is {hidden}

@1992/06/30
0D is 1.0

©@1997/03/04
0D is 1.1

@1998/03/16
0D is 1.2

©2001/08/14
0D is 1.3

©@2004/09/07
0D is 3.0

©2008/08/01
0D is 3.0

§

Guide de référence du langage PlantUML (1.2025.0)

255 / 580

10.15 Ajout de contraintes

10

DIAGRAMME DE TEMPS

©@2017/07/31
0D is 4.6

@enduml

OpenGL Desktop

C o XaxX XX

3.0

L T T T
92-(92-06 97-03 98-03 01-08

[Ref. GH-1020]

10.15 Ajout de contraintes

Il est possible d’afficher des contraintes de temps sur les diagrammes.

@startuml
robust "Web Browser" as WB
concise "Web User" as WU
WB is Initializing
WU is Absent
QWB
0 is idle
+200 is Processing
+100 is Waiting
WB@O <-> @50 : {50 ms lag}
QWU
0 is Waiting
+500 is ok
@200 <-> @+150 : {150 ms}
@enduml
Web Browser /"
Waiting h)
Processing {5{}: ms lag}
idle
Initializing
Web User/ . .
— i {150 ms} i
. . .
.AhsnniX Waiting Xol:

10.16 Période surlignée
Vous pouvez surligner une partie du diagramme

O@startuml

robust "Web Browser" as WB
concise "Web User" as WU
@0

WU is Idle

WB is Idle

§

Guide de référence du langage PlantUML (1.2025.0)

256 / 580

T
17-07

10.17 Using notes 10 DIAGRAMME DE TEMPS

@100
WU -> WB : URL
WU is Waiting #LightCyan;line:Aqua

@200
WB is Proc.

@300
WU -> WB@350 : URL2
WB is Waiting

@+200
WU is ok

@+200
WB is Idle

highlight 200 to 450 #Gold;line:DimGrey : This is my caption

@enduml
[Web Browser,” This is my caption'
Waiting I i e
Proc. | URJ—ﬂz]
ldle 0 P S
_UUelesegf / '
Waiting : <ol:
L L + L L L L L L
0 100 200 300 500 700

Ref. [QA-10868](https://forum.plantuml.net/10868/highlighted-periods-in-timing-diagrams)]

10.17 Using notes

You can use the note top of and note bottom of keywords to define notes related to a single object
or participant (available only for concise or binary object).

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100

WU is Waiting

WB is Processing

note top of WU : first note\non several\nlines
note bottom of WU : second note\non several\nlines

@300
WB is Waiting
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 257 / 580

10.18 Ajout de textes

10 DIAGRAMME DE TEMPS

Web Browser '
Waiting

Processing
ldle

Web User /

first note
on several
lines

second note
on several
lines

[Ref. QA-6877, GH-1}65]

10.18 Ajout de textes

Vous pouvez ajouter éventuellement un titre, une entéte, un pied de page, une légende ou un libellé :

O@startuml

Title Un titre

header: Une entéte
footer: Un pied de page
legend

Une légende

end legend

caption Un libellé

robust "Navigateur web" as WB
concise "Internaute" as WU

@0
WU is Inactif
WB is Inactif

@100
WU is EnAttente
WB is EnTraitement

@300
WB is EnAttente
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

258 / 580

10.19 Exemple complet 10

DIAGRAMME DE TEMPS

Un titre

.Navigateufvvebj:'

| EnAttente
EnTraitement

Inactif

| Internaute, '
EnAttente
L) L] L] L] L
0 100 300
| Une légende |
Un libellé

10.19 Exemple complet

Merci & Adam Rosien pour cet exemple

@startuml
concise "Client" as Client
concise "Server" as Server

concise "Response freshness" as Cache

Server is idle
Client is idle

@Client

0 is send
Client -> Server@+25 :
+25 is await

+75 is recv

+25 is idle

+25 is send

Client -> Server@+25 :
+25 is await
+50 is recv
+25 is idle
@100 <-> @275

GET

GET\nIf-Modified-Since: 150

: no need to re-request from server

@Server
25 is recv
+25 is work
+25 is
Server
+25 is
+75 is
+25 is
Server
+25 is

send
-> Client@+25 :
idle
recv
send
-> Client@+25 :
idle

200 OK\nExpires: 275

304 Not Modified

@Cache

75 is fresh
+200 is stale
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

259 / 580

10.20 Exemple numérique 10 DIAGRAMME DE TEMPS

Client,”

no need to re-request from server

10.20 Exemple numérique

Ostartuml
scale 5 as 150 pixels

clock clk with period 1
binary "enable" as en

binary "R/W" as rw

binary "data Valid" as dv
concise "dataBus" as db
concise "address bus" as addr

@6 as :write_beg
@10 as :write_end

@15 as :read_beg
@19 as :read_end

@0
en is low
db is "0x0"

addr is "O0x03f"
rw is low
dv is O

Q@:write_beg-3

en is high
Q:write_beg-2

db is "OxDEADBEEF"
Q@:write_beg-1

dv is 1
Q@:write_beg

rw is high

Q@:write_end
rw is low

dv is low
Q@:write_end+1
rw is low

db is "0x0"
addr is "0x23"

Q12
dv is high

§

Guide de référence du langage PlantUML (1.2025.0) 260 / 580

10.21 Ajout de couleur

10

DIAGRAMME DE TEMPS

013
db is "OxFFFF"

020

en is low
dv is low
021

db is "0xO"

highlight :write_beg to :write_end #Gold:Write

highlight :read_beg to :read_end #lightBlue:Read

db@:write_beg-1 <-> Q:write_end :
db@:write_beg-1 -> addr@:write_end+1

@enduml

setup time
: hold

enable . |
RIW '

data Valid . |

|

dataBus /

setup time

A

L J

o X

0xDEADBEEF

Koo X

OxFFFF

address bus /

—

4 03t

R

T
0

-y

10.21 Ajout de couleur

Vous pouvez ajouter de la couleur

@startuml
concise "LR" as LR
concise "ST" as ST

LR is AtPlace #palegreen
ST is AtLoad #gray

QLR

0 is Lowering

100 is Lowered #pink
350 is Releasing

@ST

200 is Moving
@enduml

3

-y

=1

Guide de référence du langage PlantUML (1.2025.0)

261 / 530

25

10.22 Using (global) style

10 DIAGRAMME DE TEMPS

LR/ | | | | | | |
AtPIHHX Lowering X Lowered XRoIsasing
ST/ : : : : : : : :

[Réf. QA-5776)

10.22 Using (global) style
10.22.1 Without style (by default)

@startuml
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing

WU is Absent
QWB
0 is idle

+200 is Processing
+100 is Waiting
WBQ@O <-> @50 : {50 ms lag}
QWU

0 is Waiting
+500 is ok

@200 <-> @+150 :
@enduml

{150 ms}

Web Browser

Waiting

Processing {5{}: ms lag}

idle

Initializing

Web User / . . '

- ' + {150 ms} '
' \ -~ '
Abse niX Waiting Xol:

; L) L) L) ; L]
0 200 300 500

10.22.2 With style
You can use style to change rendering of elements.

@startuml
<style>
timingDiagram {
document {
BackGroundColor SandyBrown
}
constraintArrow {
LineStyle 2-1
LineThickness 3
LineColor Blue

3

Guide de référence du langage PlantUML (1.2025.0)

262 / 530

10.23 Applying Colors to specific lines

10 DIAGRAMME DE TEMPS

}
}
</style>
robust "Web Browser" as WB
concise "Web User" as WU

WB is Initializing
WU is Absent

QWB

0 is idle

+200 is Processing

+100 is Waiting

WBQ@O <-> @50 : {50 ms lag}

QWU

0 is Waiting

+500 is ok

@200 <-> @+150 : {150 ms}
Q@enduml

[Ref. QA-1/340]

10.23 Applying Colors to specific lines

You can use the <style> tags and sterotyping to give a name to line attributes.

@startuml
<style>
timingDiagram {

.red {

LineColor red

}

.blue {
LineColor blue
LineThickness 5

}

}
</style>

clock clk with period 1

binary "Input Signal 1" as IS1

binary "Input Signal 2" as IS2 <<blue>>
binary "Output Signal 1" as 0S1 <<red>>

@0
IS1 is low

¢
&« Guide de référence du langage PlantUML (1.2025.0)

263 / 580

10.24 Compact mode

10 DIAGRAMME DE TEMPS

IS2 is high
0S1 is low
@2

0S1 is high
04

0S1 is low
@5

IS1 is high
0S1 is high
©6

IS2 is low
@10

IS1 is low
0S1 is low
@enduml

Input Signal 1

Input Signal 2 |

1
[Ref. QA-15870]

10.24 Compact mode

You can use compact command to compact the timing layout.

10.24.1 By default

@startuml

robust "Web Browser" as WB
concise "Web User" as WU
robust "Web Browser2" as WB2

@0

WU is Waiting
WB is Idle
WB2 is Idle

@200
WB is Proc.

@300
WB is Waiting
WB2 is Waiting

@500
WU is ok

@700

WB is Idle
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

Output Signal 1 1 !
6 L) L) L) L) L)

- -

264 / 530

10.24 Compact mode 10 DIAGRAMME DE TEMPS

Web Browser, ! !
Waiting: i
Proc. | |
Idle et
Web User,/ | ! ! ! !
(Waiting Xolc
Web Browser2 / . | | |
Waiting, . . I
idle ' '
Ll L) L) L) L) L) L) L) L}
0 200 300 500 700
10.24.2 Global mode with mode compact
@startuml
mode compact
robust "Web Browser" as WB
concise "Web User" as WU
robust "Web Browser2" as WB2
@0
WU is Waiting
WB is Idle
WB2 is Idle
@200
WB is Proc.
@300
WB is Waiting
WB2 is Waiting
@500
WU is ok
@700
WB is Idle
@enduml
Waiting |
Web Browser ot | - | |
Ide - ‘ | | |
Web User < Waiting Xok
WaitingE I I
Web Browser2 . !
0 ' 200 300 ' 500 ' 700

10.24.3 Local mode with only compact on element

Ostartuml

compact robust "Web Browser" as WB
compact concise "Web User" as WU
robust "Web Browser2" as WB2

@0
WU is Waiting
WB is Idle

3

Guide de référence du langage PlantUML (1.2025.0)

265 / 580

10.25 Scaling analog signal

10 DIAGRAMME DE TEMPS

WB2 is Idle

@200
WB is Proc.

@300
WB is Waiting
WB2 is Waiting

@500
WU is ok

@700
WB is Idle
@enduml

Waiting |

Proc.
Idle

Web Browser

Web User (I I'Wa‘rlingl | Xok

Web Browser2 /

Waiting I
Idle :

IE.) 200 300 500
[Ref. QA-11130]

10.25 Scaling analog signal

You can scale analog signal.

10.25.1 Without scaling: 0-max (by default)

@startuml
title Between O-max (by default)
analog "Analog" as A

@0
A is 350

@100
A is 450

@300

A is 350
@enduml

Between 0-max (by default)

45000

Analog

0.0,
I T T
0 100 300

3

Guide de référence du langage PlantUML (1.2025.0)

266 / 580

10.26 Customise analog signal

10 DIAGRAMME DE TEMPS

10.25.2 With scaling: min-max

@startuml
title Between min-max
analog "Analog" between 350 and 450 as A

@0
A is 350

@100
A is 450

@300
A is 350
Q@enduml

Between min-max

450.0°

Analog

350.0”
r

(=1
=

0 1
[Ref. QA-17161]

10.26 Customise analog signal
10.26.1 Without any customisation (by default)

@startuml
analog "Vcore" as VDD
analog "VCC" as VCC

@0

VDD is O

VCC is 3

@2

VDD is O

@3

VDD is 6

VCC is 6

VDD@1 -> VCC@e2 : "test"
@enduml

6.0

Vcore

VCC

[=F =
(=]

§

Guide de référence du langage PlantUML (1.2025.0)

Lo =4

267 / 530

10.27 Order state of robust signal 10 DIAGRAMME DE TEMPS

10.26.2 With customisation (on scale, ticks and height)

@startuml

analog "Vcore" as VDD

analog "VCC" between -4.5 and 6.5 as VCC
VCC ticks num on multiple 3

VCC is 200 pixels height

(¢]0]
VDD is O
VCC is 3
@2
VDD is O
@3
VDD is 6
VCC is 6
VDD@1 -> VCC@2 : "test"
@enduml
6.0
Vcore
0.0 _
6.0 \"wh‘l" """"
3.0+
VCC
0.0
-3.0
T T T 1
0 2 3

[Ref. QA-11288]

10.27 Order state of robust signal
10.27.1 Without order (by default)

@startuml
robust "Flow rate" as rate

@0
rate is high

@5
rate is none

@6
rate is low
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 268 / 580

10.27 Order state of robust signal

10 DIAGRAMME DE TEMPS

Flow riite,r"r ! ! ! !

low ' : !

none I_I—

high " i i
v L L L L L L
L] 5 6

10.27.2 With order

@startuml
robust "Flow rate" as rate
rate has high,low,none

@0
rate is high

@5
rate is none

@6
rate is low
Q@enduml
Flow rate,-’r; ! ! !
highl . ! !
ol : T
nane : |
v L L L L L L L
0 5 &

10.27.3 With order and label

@startuml

robust "Flow rate" as rate
rate has "35 gpm" as high
rate has "15 gpm" as low
rate has "O gpm" as none

@0
rate is high

@5
rate is none

@6
rate is low
@enduml
Flow rate / ' ' '
35 gpm’ ' '
o I
0gpm :
Ll L) L) L) L) L) L) 1
1} 5 [

[Ref. QA-6651]

3

Guide de référence du langage PlantUML (1.2025.0)

269 / 580

10.28 Defining a timing diagram 10 DIAGRAMME DE TEMPS

10.28 Defining a timing diagram
10.28.1 By Clock (@clk)

O@startuml

clock "clk" as clk with period 50
concise "Signall" as S1

robust "Signal2" as S2

binary "Signal3" as S3

Q@clk*0
S1 is O
S2 is O

Qclkx*1
S1 is 1
S3 is high

Qclk*2
S3 is down

Q@clkx*3
S1 is 1
S2 is 1
S3 is 1
Q@clkx4
S3 is down
Q@enduml
[clk,/
[Iy I Iy N By
iS@naH;s .
X X<
|signal2) ! ! !
1 I——
Signal3 | l | l

I T T
0 50 100 150 200

10.28.2 By Signal (@S)

@startuml

clock "clk" as clk with period 50
concise "Signall" as S1

robust "Signal2" as S2

binary "Signal3" as S3

@s1

0 is O
50 is 1
150 is 1

@S2
0is O
150 is 1

§

Guide de référence du langage PlantUML (1.2025.0) 270 / 580

10.28 Defining a timing diagram

10 DIAGRAMME DE TEMPS

@S3

50 is 1
100 is low
150 is high
200 is O
Q@enduml

£
I:Ik_,r'

i i i i i i

Signal1

Signal2 /
1

0

s

Signal3

10.28.3 By Time (@time)

@startuml

: | l | l
L L L L L L)
0 50 100 150 200

clock "clk" as clk with period 50

concise "Signall" as S1
robust "Signal2" as S2
binary "Signal3" as S3

@0
S1 is O
S2 is 0

@50
S1 is 1
S3 is 1

@100
S3 is low

@150

S1is 1

S2 is 1

S3 is high

@200
S3 is O
@enduml

;
l:lk_,-"

.

Signal1/

Signal2
1

01

J{f

Signal3

3

v
0 50 100 150 200

Guide de référence du langage PlantUML (1.2025.0)

271 / 580

10.29 Annotate signal with comment

10 DIAGRAMME DE TEMPS

[Ref. QA-9053]

10.29 Annotate signal with comment

@startuml

binary "Binary Serial Data" as D
robust "Robust" as R

concise "Concise" as C

D is low: idle
R is lo: idle
C is 1: idle

D is high: start
R is hi: start
C is 0: start

D is low: 1 1sb
R is lo: 1 1sb
C is 1: 1sb

o1

D is high: O
R is hi: O
Cis O

@6

D is low: 1
R is lo: 1
Cis 1

Q7

D is high: O msb
R is hi: O msb

C is 0: msb

©8

D is low: stop
R is lo: stop
C is 1: stop

@0 <-> @8 : Serial data bits for ASCII "A"
Q@enduml

(Little Endian)

Binary Serial Data ,idle . fstart [11sb |0 i [omsb [stop
Robust, ' start 0 ' .0 msb |

lo

1 sto

hi | 1 T
'idle | I |1 Isb I

Concise /

3

Guide de référence du langage PlantUML (1.2025.0)

272 / 580

10.29 Annotate signal with comment 10 DIAGRAMME DE TEMPS

[Ref. QA-15762, and QH-888]

§

Guide de référence du langage PlantUML (1.2025.0) 273 / 580

11 DISPLAY JSON DATA

11 Display JSON Data

JSON format is widely used in software.
You can use PlantUML to visualize your data.
To activate this feature, the diagram must:

e begin with @startjson keyword

e end with @endjson keyword.

@startjson

{
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
b
Q@endjson

P E—
fruit | Apple

color

size |Large m
> -Green

If you are looking for how to manipulate and manage JSON data on PlantUML: see rather Preprocessing

JSON.

11.1 Complex example
You can use complex JSON structure.

@startjson

{

"firstName": "John",

"lastName": "Smith",

"isAlive": true,

"age": 27,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},

"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234"
},
{
"type": "office",
"number": "646 555-4567"
}

1,

"children": [],

"spouse": null

}
Q@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0)

274 / 530

11.2 Highlight parts 11 DISPLAY JSON DATA

(streetAddress | 21 2nd Street |

rfirstName John]

lastName Smith city SR

isAlive M true State HE

200 p (postalCode [10021:3100] oo «
address o - (o M— .-.-> number | 212 555-1234]
phoneNumbers L R RERRR R r .
children ot =T > type office

|spouse) () \number | 646 555-4567 |

11.2 Highlight parts

O@startjson

#highlight "lastName"

#highlight "address" / "city"

#highlight "phoneNumbers" / "0" / "number"

{
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 28,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"
},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"
},
{
"type": "office",
"number": "646 555-4567"
}
1,
"children": [],
"spouse": null
}
@endjson
Frery— S) [streetAddress [21 2nd Street]
lastName Smith eIl s (s
isAlive M true state L
age 28 L'|:i|1r|:lstiiIlI:I:ll:l-la 10021-3100 | rtype home)
address L [I ----»{number | 212 555-1234
phoneNumbers L it) N
children ot &~ type office
spouse v *[::1 |number | 646 555-4567 |

11.3 Using different styles for highlight
It is possible to have different styles for different highlights.

@startjson

&« Guide de référence du langage PlantUML (1.2025.0) 275 / 580

11.4 JSON basic element 11 DISPLAY JSON DATA

<style>
.hl {
BackGroundColor green
FontColor white
FontStyle italic
}
.h2 {
BackGroundColor red
FontColor white
FontStyle bold
}
</style>
#highlight "lastName"
#highlight "address" / "city" <<hi1>>
#highlight "phoneNumbers" / "0" / "number" <<h2>>
{

"firstName": "John",

"lastName": "Smith",

"isAlive": true,

"age": 28,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

1,

"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234"
s
{
"type": "office",
"number": "646 555-4567"
}

1,

"children": [],

"spouse": null

}

@endjson

streetAddress | 21 2nd Strest

rfirstName John]
lastName Smith
isAlive H true state L

age " JL’F;ustaICnde 10021-3100 | P ——
address L e e T Y\, \mber 212 555-1234

phoneNumbers @ omemmmeemea
sl ST type |office]

children Fee
|spouse) (number | 646 555-4567 |

[Ref. QA-15756, GH-1393]

11.4 JSON basic element
11.4.1 Synthesis of all JSON basic element

O@startjson

{

§

Guide de référence du langage PlantUML (1.2025.0) 276 / 580

11.5 JSON array or table

11 DISPLAY JSON DATA

"null": null,
"true": true,
"false": false,
"JSON_Number": [-1, -1.1, "<color:green>TBC"],
"JSON_String": "a\nb\rc\td <color:green>TBC...",
"JSON_Object": {

e {3,

"k_int": 123,

llk Str": "abC",

"k_obj": {"k": "v"}

1,

"JSON_Array" : [
aa,
[true, false],
(-1, 11,

[llall s llbll , IICH] s
["mix", null, true, 1, {"k": "v"}]

]
}
@endjson
' " —y
null -1
true M true =1.1
false O false ‘f’,f TBC
JSON_Number PRl ;
JSON_Stri B
_String | abc d TBC i (123
JSON_Object PO BN Rl
k_str | abc
|JSON_Array .. =2
k_obj

11.5 JSON array or table
11.5.1 Array type

O@startjson

{

"Numeric": [1, 2, 3],

"Strlng n . [llvlall , Ilv2bl| s "VSC"] ,
"Boolean": [true, false, true]

}

Q@endjson

&« Guide de référence du langage PlantUML (1.2025.0)

277 / 580

11.6 JSON numbers

11 DISPLAY JSON DATA

a"

Numeric | * - via
String | il = v2b
Boolean [T v3c
‘r'—'\
B true
O false
& true

11.5.2 Minimal array or table
11.5.3 Number array

@startjson
[1, 2, 3]
@endjson

(n]~)

11.5.4 String array

@startjson
[lllall’ l12bll’ ll3cll]
Q@endjson

11.5.5 Boolean array

@startjson
[true, false, truel
@endjson

& true
O false
B true

11.6 JSON numbers

@startjson

{

"DecimalNumber": [-1, 0, 1],

"DecimalNumber . Digits": [-1.1, 0.1, 1.1],
"DecimalNumber ExponentPart": [1E5]

X

Q@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0)

278 / 580

11.7 JSON strings 11 DISPLAY JSON DATA

(DecimalNumber o} [
DecimalNumber . Digits ®-[---- = 0.1
|DecimalNumber ExponentPart | - 1.1

11.7 JSON strings
11.7.1 JSON Unicode
On JSON you can use Unicode directly or by using escaped form like \uXXXX.

@startjson

{
"<color:blue>code": "<color:blue>value",
"a\\uO05Cb" : "a\u005Cb",
"\\uD83D\\uDE10" : "\uD83D\uDE10",
"non., nn
}
@endjson
ri:n:.'n:ie ‘\.rialuve1
a\ud05Chb alb
\uD83D\WDE10 | ©
L® I@- S

11.7.2 JSON two-character escape sequence

@startjson

{
"**x]legend**: character name": ["**two-character escape sequencex**", "example (between
"quotation mark character (U+0022)": ["\\\"", "a\"b"],
"reverse solidus character (U+005C)": ["\\\\", "a\\b"],
"solidus character (U+002F)": ["\\\/", "a\/b"],
"backspace character (U+0008)": ["\\b", "a\bb"],
"form feed character (U+000C)": ["\\f", "a\fb"],
"line feed character (U+000A)": ["\\n", "a\nb"],
"carriage return character (U+000D)": ["\\r", "a\rb"],
"character tabulation character (U+0009)": ["\\t", "a\tb"]

}

@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0) 279 / 580

11.8 Minimal JSON examples 11 DISPLAY JSON DATA

(twn-character escape sequence]

Lexample (between 'a'and 'b') J
b
SR
\'
' a'b
—
"
\
aib
. —
legend: character name o—
guotation mark character (U+0022) '"'".u' - v
reverse solidus character (U+005C) ol A
solidus character (U+002F) o)
backspace character (U+0008) L e R .
a
form feed character (U+000C) L ST o
line feed character (U+000A) ®-r-. __}'“—"
carriage return character (U+000D) bl) aflb
|\character tabulation character (U+0009) | ¢ | , —
i : —
-
(&b
.
-
G}

TODO: FIXME FIXME or not , on the same item as \n management in PlantUML See Report Bug
on QA-13066 TODO: FIXME

@startjson

[
"\\\\",
Il\\nll s
Il\\rll s
Il\\t n
]
@endjson
\

11.8 Minimal JSON examples

@startjson
"Hello world!"
@endjson

Hello world!

&« Guide de référence du langage PlantUML (1.2025.0) 280 / 580

11.9 Empty table or list

11 DISPLAY JSON DATA

O@startjson
42
@endjson

@startjson
true
@endjson

(Exzamples come from STD 90 - Examples)

11.9 Empty table or list

@startjson

{
"empty_tab": [],
"empty_list": {}
}
@endjson

[Ref. QA-1/397]

11.10 Using (global) style

empty_tab
empty_list

11.10.1 Without style (by default)

@startjson
#highlight "1" / "hr"

[
{
"name": "Mark McGwire",
"hr": 65,
"avg": 0.278
},
{
"name": "Sammy Sosa",
"hr": 63,
"avg": 0.288
}
]
@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0)

[name | Mark McGwire |
hr 65

lavg | 0.278)
name | Sammy Sosa
hr 63

Lavg [0.288)

281 / 530

11.10 Using (global) style

11 DISPLAY JSON DATA

11.10.2 With style
You can use style to change rendering of elements.

@startjson
<style>
jsonDiagram {
node {
BackGroundColor Khaki
LineColor lightblue
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
RoundCorner 0O
LineThickness 2
LineStyle 10-5
separator {
LineThickness 0.5
LineColor black
LineStyle 1-5
}
}
arrow {
BackGroundColor lightblue
LineColor green
LineThickness 2
LineStyle 2-5
}
highlight {
BackGroundColor red
FontColor white
FontStyle italic

}
}
</style>
#highlight "1" / "hr"
[
{
"name": "Mark McGwire",
"hr": 65,
"avg": 0.278
},
{
"name": "Sammy Sosa",
"hr": 63,
"avg": 0.288
}
]
@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0)

282 / 530

11.11 Display JSON Data on Class or Object diagram 11 DISPLAY JSON DATA

name : Mark McGwire
hr 65
......>avg 0.278

[I

"> name Sammy Sosa
hr 63
avg :0.288

[Adapted from QA-13123 and QA-13288]

11.11 Display JSON Data on Class or Object diagram
11.11.1 Simple example

@startuml
class Class
object Object
json JSON {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}

@enduml

(©)cClass ‘ Object

JSON
fruit | Apple
size |Large
color | Red
Green |

[Ref. QA-15/81]

11.11.2 Complex example: with all JSON basic element

@startuml
json "JSON basic element" as J {
"null": null,
"true": true,
"false": false,
"JSON_Number": [-1, -1.1, "<color:green>TBC"],
"JSON_String": "a\nb\rc\td <color:green>TBC...",
"JSON_Object": {
e {7,
"k_int": 123,
|lk Str": llabcll’
"k_Obj ". {"k": "V"}
},
"JSON_Array" : [
,
[true, false],
-1, 11,

§

Guide de référence du langage PlantUML (1.2025.0) 283 / 580

11.12 Display JSON Data on Deployment (Usecase, Component, Deployméht) QIsdthtY JSON DATA

["a", "b", "c"],

["mix", null, true, 1, {"k": "v"}]
]
¥

@enduml

JSON basic element
null null

true true

false false
JSON_Number | -1

-1.1

TBC
JSON_String |abc d TBC..
JSON_Object | {}
k_int | 123
k_str [abe
k_obj [k |v
JSOM_Array true

false

-1

O |o|@ =

mix

null

true
1
k|v

11.12 Display JSON Data on Deployment (Usecase, Component, Deploy-
ment) diagram

11.12.1 Simple example
O@startuml

allowmixing

component Component

actor Actor
usecase Usecase
O Interface
node Node
cloud Cloud
json JSON {

"fruit":"Apple",

"size":"Large",

"color": ["Red", "Green"]
}

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 284 / 580

11.13 Display JSON Data on State diagram 11 DISPLAY JSON DATA

EI —I_ /’---_ - _---""\
Component A, I\"--lfl?efs’?_---/l

O Node » Cloud |
__. __.-"
Interface T
JSON
fruit | Apple
size | Large
color | Red
Green
[Ref. QA-15481]
Complex example: with arrow
@startuml
allowmixing
agent Agent
stack {
json "JSON_file.json" as J {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}
}
database Database
Agent -> J
J -> Database
@enduml
JSON_file json
fruit | Apple —.,
- size |Large 4’| Database |
color | Red Tm——
_ Green |

11.13 Display JSON Data on State diagram
11.13.1 Simple example

@startuml

state "A" as stateA

state "C" as stateC {
state B

}

§

Guide de référence du langage PlantUML (1.2025.0) 285 / 580

11.14 Creole on JSON

11 DISPLAY JSON DATA

json J {
"fruit":"Apple",
"size":"Large",
"color": ["Red", "Green"]
}
Q@enduml

A ./'_" \
)

[Ref. QA-17275]

11.14 Creole on JSON
You can use Creole or HTML Creole on JSON diagram:

@startjson

{

"Creole":
{
"wave": "~~wave~~",
"bold": "*xxbold**",
"italics": "//italics//",
"stricken-out": "--stricken-out--",
"underlined": "__underlined__",
"not-underlined": "~__not underlined__",
"wave-underlined": "~~wave-underlined~~"
},

"HTML Creole":
{
"bold": "bold",
"italics": "<i>italics",
"monospaced": "<font:monospaced>monospaced",
"stroked": "<s>stroked",
"underlined": "<u>underlined",
"waved": "<w>waved",
"green-stroked": "<s:green>stroked",
"red-underlined": "<u:red>underlined",
"blue-waved": "<w:#0000FF>waved",
"Blue": "<color:blue>Blue",
"Orange": "<back:orange>Orange background",
"big": "<size:20>big"
},

"Graphic":
{

"OpenlIconic": "account-login <&account-login>",

"Unicode": "This is <U+221E> long",
"Emoji": "<:calendar:> Calendar",

"Image": "<img:https://plantuml.com/logo3.png>"

}
}

@endjson

§

Guide de référence du langage PlantUML (1.2025.0)

fruit

Apple

size

Large

color

Red

Graan

286 / 530

11.14

Creole on JSON

11 DISPLAY JSON DATA

—y
Creole .
HTML Creole | -

Graphic

(wave wave)
bold bold
italics italics
stricken-out striekerott
underlined __underlined__
not-underlined | notunderdined
|wave-underlined | wave-underlined
-
" [bold bold]
3 italics italics
monospaced |mocnospaced
stroked streked
underlined underlined
waved waved
_____ green-stroked |streked
red-underlined | underlined
blue-waved waved
Blue Blue
Orange QOrange background
s oo big |
& . .
Openlconic | account-login =2
Unicode This is co long

Emoji il

Calendar

Image

«
&« Guide de référence du langage PlantUML (1.2025.0)

287 / 580

12 DISPLAY YAML DATA

12

Display YAML Data

YAML format is widely used in software.

You can use PlantUML to visualize your data.

To activate this feature, the diagram must:

o begin with @startyaml keyword

¢ end with @endyaml keyword.

O@startyaml

fruit: Apple

size: Large
color:

- Red

- Green
@endyaml

Q1 _ 3
fruit | Apple
size [Large —
Red
color L Bl Grean
—
12.1 Complex example
O@startyaml
doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
- huey
- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two
Q@endyaml
r|:h:ne adeer, a female c!e»ar1
ray a drop of golden sun ’W
pi 3.14159 dewey
xmas true _Iome
french-hens 3 o
calling-birds * ’ (red

| xmas-fifth-day

g
» calling-birds

french-hens

golden-rings

partridges

\turtle-doves

&« Guide de référence du langage PlantUML (1.2025.0)

fcuunt

1]

Uncaﬁnn

apearﬂeeJ

288 / 530

12.2 Specific key (with symbols or unicode)

12 DISPLAY YAML DATA

12.2 Specific key (with symbols or unicode)

@startyaml
@fruit: Apple
$size: Large

&color:
: Heart

Red

h: Per mille

@endyaml

[Ref. QA-13376]

PR
@fruit

DR
Apple

$size

Large

&color

Red

Heart

12.3 Highlight parts
12.3.1 Normal style

@startyaml
#highlight "french-hens"
#highlight "xmas-fifth-day" / "partridges"

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true

french-hens: 3
calling-birds:

- huey
- dewey
- louie
- fred

xmas-fifth-day:
calling-birds: four

french-hens:

3

golden-rings: 5

partridges:

count: 1

location: "a pear tree"

turtle-doves: two

@endyaml
r|:ir|:n'e adeer, a female ':!eer1
ray a drop of golden sun rhuey A
pi 3.14158 deway
xmas true Iouie
french-hens |3]

Lt fred

calling-birds L
| xmas fifth-day *J---- calling-birds | four|

(X |

Per mille

french-hens |3

golden-rings | 5

partridges

\turtle-doves

&« Guide de référence du langage PlantUML (1.2025.0)

(cuunt

1]

chaﬁun

apearneeJ

289 / 580

12.4 Using different styles for highlight

12 DISPLAY YAML DATA

12.3.2 Customised style

@startyaml
<style>
yamlDiagram {
highlight {
BackGroundColor red
FontColor white
FontStyle italic
X
3
</style>
#highlight "french-hens"
#highlight "xmas-fifth-day" / "partridges"

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159

xmas: true

french-hens: 3
calling-birds:

- huey

- dewey

- louie

- fred

xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5

partridges:

count: 1

location: "a pear tree"
turtle-doves: two

Q@endyaml

(doe adeer, a female deer |

?y adrop of golden sun E;Eﬁ

Pl 3.14159 dowey

xmas true :

o

french-hens 3 L

' =7 | fred

calling-birds w-fo--cT !

| xmasfifth-day S R "rca“ing-hirds tour)
french-hens |3
golden-rings | 5

| partridges -
turtle-doves | two

[Ref. QA-13288]

12.4 Using different styles for highlight
It is possible to have different styles for different highlights.

O@startyaml
<style>
.h A{
BackGroundColor green
FontColor white

§

Guide de référence du langage PlantUML (1.2025.0)

(count

1]

location

apearneeJ

290 / 580

12.5 Using (global) style 12 DISPLAY YAML DATA

FontStyle italic
X
.h2 {
BackGroundColor red
FontColor white
FontStyle italic
X
</style>
#highlight "french-hens" <<hi1>>
#highlight "xmas-fifth-day" / "partridges" <<h2>>

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159

Xxmas: true

french-hens: 3
calling-birds:

- huey

- dewey

- louie

- fred

xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5

partridges:

count: 1

location: "a pear tree"
turtle-doves: two

@endyaml
rdﬂe adeer, a female c!e*ar1
ray adrop of golden sun W
pi 3.14158 T
= Sl louie
french-hens 3 7
' -7 | fred
calling-birds .- —
| xmas-fifth-day '3_""*rcalling-hird5 tour)

french-hens |3

golden-rings | 5

nt 1

partridges Ry fcau -]

.t rtle-do Uocahnn apearﬂeeJ
urtle-doves | two

[Ref. QA-15756, GH-1393]

12.5 Using (global) style
12.5.1 Without style (by default)

@startyaml

name: Mark McGwire
hr: 65
avg: 0.278

name: Sammy Sosa
hr: 63

§

Guide de référence du langage PlantUML (1.2025.0) 291 / 580

12.5 Using (global) style

12 DISPLAY YAML DATA

avg: 0.288
@endyaml

name | Mark I'\.-ch*..'.rire1

hr 65

n __..»avg |0.278)

name | Sammy Sosa|
hr 63
avg |[0.288

J

12.5.2 With style
You can use style to change rendering of elements.

O@startyaml
<style>
yamlDiagram {
node {
BackGroundColor lightblue
LineColor lightblue
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor Khaki
RoundCorner O
LineThickness 2
LineStyle 10-5
separator {
LineThickness 0.5
LineColor black
LineStyle 1-5
}
}
arrow {
BackGroundColor lightblue
LineColor green
LineThickness 2
LineStyle 2-5

}
}
</style>
name: Mark McGwire
hr: 65
avg: 0.278
name: Sammy Sosa
hr: 63
avg: 0.288
@endyaml

«
&« Guide de référence du langage PlantUML (1.2025.0)

292 / 530

12.6 Creole on YAML 12 DISPLAY YAML DATA

name :Mark McGwire
hr 65
.....>avg 0.278

> name Sammy Sosa
hr 63
avg :0.288

[Ref. QA-13123]

12.6 Creole on YAML
You can use Creole or HTML Creole on YAML diagram:

O@startyaml
Creole:
wave: ~~wave~~
bold: **xboldx*x*
italics: //italics//
monospaced: ""monospaced""
stricken-out: --stricken-out--
underlined: __underlined__
not-underlined: ~__not underlined__
wave-underlined: ~~wave-underlined~~
HTML Creole:
bold: bold
italics: <i>italics
monospaced: <font:monospaced>monospaced
stroked: <s>stroked
underlined: <u>underlined
waved: <w>waved
green-stroked: <s:green>stroked
red-underlined: <u:red>underlined
blue-waved: <w:#0000FF>waved
Blue: <color:blue>Blue
Orange: <back:orange>Orange background
big: <size:20>big
Graphic:
OpenIconic: account-login <&account-login>
Unicode: This is <U+221E> long
Emoji: <:calendar:> Calendar
Image: <img:https://plantuml.com/logo3.png>
@endyaml

§

Guide de référence du langage PlantUML (1.2025.0) 293 / 580

12.6 Creole on YAML 12 DISPLAY YAML DATA

(wave wave)

bold bold

italics italics

monospaced "monospaced"”

stricken-out striekerott

underlined __underlined

not-underlined |__ notunderined__

;wave—underlined wave-underlined

" [bold bold)

2 |italics italics

! monospaced |mocnospaced

: stroked stroked
,7_h underlined underlined
Creole . e waved
SR e > green-stroked |streked
w—'{l—a red-underlined | underlined
blue-waved waved
. Blue Blue
Orange Orange background
N big)
B .
Openlconic | account-login =
Unicode This is co long
Emoji (7] calendar
Image

«
&« Guide de référence du langage PlantUML (1.2025.0) 294 / 580

13 DIAGRAMME DE RESEAU AVEC NWDIAG

13 Diagramme de réseau avec nwdiag

Un diagramme de réseau est une représentation visuelle d’un réseau informatique ou de télécommuni-
cations. Il illustre la disposition et les interconnexions des composants du réseau, notamment les
serveurs, les routeurs, les commutateurs, les concentrateurs et les périphériques. Les diagrammes de
réseau sont des outils précieux pour les ingénieurs et les administrateurs de réseau, qui peuvent ainsi
comprendre, configurer et dépanner les réseaux. Ils sont également essentiels pour visualiser la
structure et le flux des données dans un réseau, garantissant ainsi des performances et une sécurité
optimales.

nwdiag, développé par Takeshi Komiya, fournit une plateforme rationalisée pour esquisser rapidement
des diagrammes de réseau. Nous remercions Takeshi pour cet outil innovant!

Gréce a sa syntaxe intuitive, nwdiag a été intégré de maniere transparente dans PlantUML. Les exemples
présentés ici sont inspirés de ceux documentés par Takeshi.

13.1 Diagramme simple
13.1.1 Définir un réseau

@startuml
nwdiag {
network dmz {
address = "210.x.x.x/24"
}
}

@enduml

dmz
2100 x.x024

13.1.2 Définir certains éléments ou serveurs sur un réseau

@startuml
nwdiag {
network dmz {
address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];
web02 [address = "210.x.x.2"];
+
}
@enduml
|:ir|1zI ,
210 x 024
210.k.x.1 210pkx.2
weh01 web02

13.1.3 Exemple complet

@startuml
nwdiag {
network dmz {
address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];

§

Guide de référence du langage PlantUML (1.2025.0) 295 / 580

13.2 Define multiple addresses

13 DIAGRAMME DE RESEAU AVEC NWDIAG

web02 [address "210.x.x.2"];
}

network internal {
address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01;
db02;
}
}
@enduml
|:ir|1zI
210 x 024
210521 210pkx.2
web01 web02
172 k%1 1722
internal .
172 x.xx/24
dh01 dhb0z2

13.2 Define multiple addresses

@startuml
nwdiag {
network dmz {
address = "210.x.x.x/24"

// set multiple addresses (using comma)
web01 [address = "210.x.x.1, 210.x.x.20"];
web02 [address "210.x.x.2"];

}

network internal {
address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];
db01;
db02;
}
}
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

296 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RESEAU AVEC NWDIAG

dmz ,
2100 x.x024 210x 1
EES
210.4%.20 2104x.2
web01 web02
172 k%1 172 kx.2
internal . ,
172 x.x.0/24
db01 db02

13.3 Grouping nodes
13.3.1 Define group inside network definitions

O@startuml
nwdiag {
network Sample_front {
address = "192.168.10.0/24";

// define group
group web {
web01 [address
web02 [address
}
}
network Sample_back {
address = "192.168.20.0/24";

non
N =
[

web01 [address = ".1"];
web02 [address = ".2"];
db01 [address = ".101"];
db02 [address = ".102"];

// define network using defined nodes
group db {
db01;
db02;
}
}
}

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 297 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RESEAU AVEC NWDIAG

Sample_front

192.168.10.0/24

L=}

web01

web02

Sample_back .

=)

192.168.20.0/24
i

db01

db02

13.3.2 Define group outside of network definitions

O@startuml
nwdiag {
// define group outside of network definitions
group {
color = "#FFAAAA";

web01;

web02;

db01;
}

network dmz {
web01;
web02;

}

network internal {
web01;
web02;
db01;
db02;

}

}

@enduml

dmz I

web01

web02

internal ¢

db02 db01

13.3.3 Define several groups on same network
13.3.4 Example with 2 group

O@startuml

nwdiag {

§

Guide de référence du langage PlantUML (1.2025.0)

298 / 580

13.3 Grouping nodes 13 DIAGRAMME DE RESEAU AVEC NWDIAG

group {
color = "#FFaaaa";
web01;
db01;

}

group {
color = "#aaaaFF";
web02;
db02;

}

network dmz {

address = "210.x.x.x/24"

web01 [address = "210.x.x.1"];
web02 [address = "210.x.x.2"];
}
network internal {
address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address = "172.x.x.2"];

db01 ;
db02 ;
¥
}
@enduml
dmz
2100 x.x024
210521 210pkx.2
web01 web02
172.%.%.1 1722
internal .
172 x.x.0/24
db01 db02

[Ref. QA-12663]

13.3.5 Example with 3 groups

@startuml
nwdiag {
group {
color = "#FFaaaa";
web01;
db01;
}
group {
color = "#aaFFaa";
web02;
db02;
}
group {
color = "#aaaaFF";

§

Guide de référence du langage PlantUML (1.2025.0)

299 / 530

13.4 Extended Syntax (for network or group)

13 DIAGRAMME DE RESEAU AVEC NWDIAG

web03;
db03;
¥

network dmz {
web01;
web02;
web03;

}

network internal {
web01;
db01 ;
web02;
db02 ;
web03;
db03;

}

}

@enduml

dmz ¢

web01

web02 web03

internal L

db01

dbi2 db03

[Ref. QA-13138]

13.4 Extended Syntax (for network or group)

13.4.1 Network

For network or network’s component, you can add or change:

o addresses (separated by comma ,);
e color;

e description;

¢ shape.

@startuml
nwdiag {
network Sample_front {
address = "192.168.10.0/24"
color = "red"

// define group

group web {
web01 [address = ".1, .2", shape
web02 [address = ".2, .3"]

}

}
network Sample_back {

address = "192.168.20.0/24"

§

"node"]

Guide de référence du langage PlantUML (1.2025.0) 300 / 580

13.4 Extended Syntax (for network or group) 13 DIAGRAMME DE RESEAU AVEC NWDIAG

color = "palegreen"

web01 [address = ".1"]

web02 [address = ".2"]

db01 [address = ".101", shape = database]
db02 [address = ".102"]

// define network using defined nodes
group db {
db01;
db02;
}
}
}

@enduml

Sample_front
192 166.10.0/24

L=}

L=}

Sample_back
192 168.20.0/24 |}\
Ap

[— ‘ db02
db01

13.4.2 Group

For a group, you can add or change:
e color;
o description.

O@startuml
nwdiag {
group {
color = "#CCFFCC";
description = "Long group description";

web01;

web02;

db01;
}

network dmz {
web01;
web02;
}
network internal {
web01;
web02;
db01 [address = ".101", shape = databasel;
}
}

§

Guide de référence du langage PlantUML (1.2025.0) 301 / 580

13.5 Using Sprites 13 DIAGRAMME DE RESEAU AVEC NWDIAG

@enduml
dmz 1
Lang group descriptian
web01 web02
internal . 1
| k
| db01 \

[Ref. QA-12056]

13.5 Using Sprites
You can use all sprites (icons) from the Standard Library or any other library.
Use the notation <$sprite> to use a sprite, \n to make a new line, or any other Creole syntax.

@startuml
linclude <office/Servers/application_server>
linclude <office/Servers/database_server>

nwdiag {
network dmz {
address = "210.x.x.x/24"

// set multiple addresses (using comma)
web0O1 [address = "210.x.x.1, 210.x.x.20", description = "<$application_server>\n web01"]
web02 [address = "210.x.x.2", description = "<$application_server>\n web02"];
}
network internal {
address = "172.x.x.x/24";

web01 [address = "172.x.x.1"];
web02 [address "172.x.x.2"];
db01 [address "172.x.x.100", description = "<$database_server>\n db01"];
db02 [address "172.x.x.101", description "<$database_server>\n db02"];

}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 302 / 580

13.6 Using Openlconic 13 DIAGRAMME DE RESEAU AVEC NWDIAG

dmz ,
210.x.x.x/24 2101
A
21045 20 2102
web01 web02
172 kx.1 172 px.2
internal . ,
172 x.x.x/24
17 2.x[x 100 17 2.x[x. 101
Ei Ei
dbo1 dbo2

[Ref. QA-11862]

13.6 Using Openlconic
You can also use the icons from Openlconic in network or node descriptions.

Use the notation <&icon> to make an icon, <&icon*n> to multiply the size by a factor n, and \n to make
a newline:

@startuml

nwdiag {

group nightly {
color = "#FFAAAA";
description = "<&clock> Restarted nightly <&clock>";
web02;
db01;

}

network dmz {

address = "210.x.x.x/24"

user [description = "<&person*4.5>\n userl"];

// set multiple addresses (using comma)

web01 [address = "210.x.x.1, 210.x.x.20", description = "<&cog*4>\nweb01"]
web02 [address "210.x.x.2", description = "<&cog*4>\nweb02"];

}

network internal {
address = "172.x.x.x/24";

web01 [address "172.x.x.1"]1;

web02 [address "172.x.x.2"]1;

db01 [address = "172.x.x.100", description = "<&spreadsheet*4>\n db01"];
db02 [address "172.x.x.101", description = "<&spreadsheet*4>\n db02"];
ptr [address = "172.x.x.110", description = "<&print*4>\n ptr01"];

3
X

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 303 / 580

13.7 Same nodes on more than two networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

dmz ,
2100 x.x024
2104.x.1 210pkx.2
210.4.x.20
@ Reftarted nightly ©
userl weh01 weh02
172 k%1 172 kx.2
internal . ,
1720 nxi24 1722 100
17zt A72xfi10 e
[
l-l
db02 ptr01 db01

13.7 Same nodes on more than two networks

You can use same nodes on different networks (more than two networks); nwdiag use in this case “jump

line’ over networks.

@startuml
nwdiag {
// define group at outside network definitions
group {
color = "#777T7FF";

web01;

web02;

db01;
}

network dmz {
color = "pink"

web01;
web02;
}

network internal {

web01;

web02;

db01 [shape = database];
¥

network internal?2 {
color = "LightBlue";

web01;

web02;

db01;
}

§

Guide de référence du langage PlantUML (1.2025.0)

304 / 580

13.8 Peer networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

@enduml

dmz ¢]

internal EC—_0— 1

internal2

13.8 Peer networks

Peer networks are simple connections between two nodes, for which we don’t use a horizontal "busbar”
network

@startuml

nwdiag {
inet [shape = cloud];
inet -- router;

network {
router;
web01;
web02;
}
}

@enduml

o
inet

router

13.9 Peer networks and group
13.9.1 Without group

@startuml
nwdiag {
internet [shape = cloud];

¢
&« Guide de référence du langage PlantUML (1.2025.0) 305 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RESEAU AVEC NWDIAG

internet -- router;

network proxy {

router;
app;
}
network default {
app;
db;
}
}
@enduml

P g '“/'\.\
! .
¢ internet {
L A
S A

router

proxy ————

app

default ——

db

13.9.2 Group on first

@startuml
nwdiag {
internet [shape = cloud];
internet -- router;
group {
color = "pink";
app;
db;
}
network proxy {
router;
app;
}
network default {
app;
db;
}

§

Guide de référence du langage PlantUML (1.2025.0)

306 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RESEAU AVEC NWDIAG

@enduml

P MW
[} N /
/ internet 4
S -
Mg S

router

proxy ————

app

default ———

db

13.9.3 Group on second

@startuml

nwdiag {
internet [shape = cloud];
internet -- router;

network proxy {
router;
app;

}

group {
color = "pink";
app;
db;

b

network default {

app;
db;
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

307 / 580

13.9 Peer networks and group 13 DIAGRAMME DE RESEAU AVEC NWDIAG

Ve T kS
[} N /
/ internet 4
S -
Mg S

router

proxy ————

app

default ———

db

13.9.4 Group on third

@startuml

nwdiag {
internet [shape = cloud];
internet -- router;

network proxy {
router;
app;
}
network default {
app;
db;
}
group {
color = "pink";
app;
db;
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 308 / 580

13.10 Add title, caption, header, footer or legend oh3netav& Rib}fARE DE RESEAU AVEC NWDIAG

e
P .
|

/ internet <

ey A
.

e

router

proxy ————

app

default ———

db

[Ref. Issue#408 and QA-12655]

13.10 Add title, caption, header, footer or legend on network diagram

@startuml

header some header
footer some footer
title My title

nwdiag {
network inet {
web01 [shape = cloud]
}
}

legend
The legend
end legend

caption This is caption
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

309 / 580

13.11 With or without shadow

13 DIAGRAMME DE RESEAU AVEC NWDIAG

[Ref. QA-11303 and Common commands]

13.11 With or without shadow
13.11.1 With shadow (by default)

Ostartuml
nwdiag {
network nw {
server;
internet;
}
internet [shape = cloud];
}

Q@enduml

My title

inet

Vo

. .
1 Y
web01 <
{ y
-

R

The legend

This is caption

L

server

13.11.2 Without shadow

@startuml
<style>
root {
shadowing 0O
}
</style>
nwdiag {
network nw {
server;
internet;
¥
internet [shape = cloud];
}

@enduml

§

; internet <,I

T
P \
o)

A

Guide de référence du langage PlantUML (1.2025.0)

310 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

nw L 1

e
P .

- Y
server ¢ internet <

- P
e

[Ref. QA-14516]

13.12 Change width of the networks

You can change the width of the networks, especially in order to have the same full width for only some
or all networks.

Here are some examples, with all the possibilities.

13.12.1 First example
e without

@startuml
nwdiag {
network NETWORK_BASE {
dev_A [address = "dev_A"]
dev_B [address "dev_B"]
}
network IntNET1 {
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
Q@enduml
NETWORK_BASE ¢ 1
dey A ded B
dev_A dev_B
dev_B1
INtMET T 1
dev| M1
dev_M
dev| M2 dev| B2
INtNETZ ¢ 1

o only the first

@startuml

nwdiag {
network NETWORK_BASE {
width = full

§

Guide de référence du langage PlantUML (1.2025.0) 311 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
¥
network IntNET1 {
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]

}
}
Q@enduml
METWORK_BASE 1
deny A ded B
dev A dev B
dav_B1
INtNET1 ¢ : 1
dev| M1
dev_M
dev| M2 dev| B2
INtMET2Z 1

o the first and the second

@startuml
nwdiag {
network NETWORK_BASE {
width = full
dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
}
network IntNET1 {
width = full
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
}
network IntNET2 {
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]
¥
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 312 / 580

13.12 Change width of the networks

13 DIAGRAMME DE RESEAU AVEC NWDIAG

NETWORK_BASE

dey A dey |
dev_A dev_
dev_B1
INtMET
dev| M1
dev_M
dev| M2 dav| |
INtNETZ ¢
o all the network (with same full width)
@startuml
nwdiag {
network NETWORK_BASE {
width = full
dev_A [address = "dev_A"]
dev_B [address = "dev_B"]
¥
network IntNET1 {
width = full
dev_B [address = "dev_B1"]
dev_M [address = "dev_M1"]
¥
network IntNET2 {
width = full
dev_B [address = "dev_B2"]
dev_M [address = "dev_M2"]
¥
}
@enduml
METWORK_BASE
deny A dey |
dev_A dev_
dav_B1
INtNET1 ¢
dev| M1
dev_M
dev| M2 dav| |
INtMET2Z

13.12.2 Second example

o without

§

Guide de référence du langage PlantUML (1.2025.0)

313 / 580

13.12 Change width of the networks

13 DIAGRAMME DE RESEAU AVEC NWDIAG

@startuml
nwdiag {
el
network ni {
el
e2
e3
}

network n2 {
e3
ed
eb

}

network n3 {
e2
eb6
}
}

@enduml

el

nit 1

e2 ed

n2 [

es

n3 ————

e

o only the first

@startuml
nwdiag {
el
network ni1 {
width = full
el
e2
e3
}

network n2 {
e3
ed

§

Guide de référence du langage PlantUML (1.2025.0)

314 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

eb5
}

network n3 {
e2
eb
}
}

@enduml

el

ni 1

a2 el

n2 L 1

njicC——

ef

o the first and the second

@startuml
nwdiag {
el
network ni1 {
width = full
el
e2
e3
}

network n2 {
width = full
e3
ed
eb

}

network n3 {
e2
eb
}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 315 / 580

13.12 Change width of the networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

el

nit]

e2 el

n2 L T 1

n3 ————

e

o all the network (with same full width)

@startuml
nwdiag {
el
network ni1 {
width = full
el
e2
e3
}

network n2 {
width = full
e3
ed
eb

}

network n3 {
width = full
e2
eb
}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 316 / 580

13.13 Other internal networks

13 DIAGRAMME DE RESEAU AVEC NWDIAG

el
nii
e2 el
n2t T
a4 es
n3 L
ef

13.13 Other internal networks

You can define other internal networks (TCP/IP, USB, SERIAL,...).

o Without address or type

@startuml
nwdiag {
network LAN1 {

}

a [address = "al"];

network LAN2 {

}

a [address = "a2"];
switch;

switch -- equip;
equip -- printer;

3

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

317 / 580

13.13 Other internal networks 13 DIAGRAMME DE RESEAU AVEC NWDIAG

LANZ

switch

equip

printer

e With address or type

O@startuml
nwdiag {
network LAN1 {
a [address = "al"];
}
network LAN2 {
a [address = "a2"];
switch [address = "s2"];
}
switch -- equip;
equip [address = "e3"];
equip —- printer;
printer [address = "USB"];
}

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 318 / 580

13.14 Using (global) style 13 DIAGRAMME DE RESEAU AVEC NWDIAG

LANZ

equip

printer

[Ref. QA-12824]

13.14 Using (global) style
13.14.1 Without style (by default)

@startuml
nwdiag {
network DMZ {
address = "y.x.x.x/24"
web0l [address = "y.x.x.1"];
web02 [address "y.x.x.2"];

network Internal {

web01;

web02;

db01 [address = "w.w.w.z", shape = databasel];

group {
description = "long group label";
web01;
web02;
db01;
}
X

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 319 / 580

13.14 Using (global) style 13 DIAGRAMME DE RESEAU AVEC NWDIAG

DMz ,
yox.xx/24
y.x[x1 yx|u 2
long group label
web01 web02
Internal .
W.Tx.z
[db01 ‘

13.14.2 With style
You can use style to change rendering of elements.

O@startuml
<style>
nwdiagDiagram {
network {
BackGroundColor green
LineColor red
LineThickness 1.0
FontSize 18
FontColor navy
}
server {
BackGroundColor pink
LineColor yellow
LineThickness 1.0
' FontXXX only for description or label
FontSize 18
FontColor #blue
}
arrow {
' FontXXX only for address
FontSize 17
FontColor #red
FontName Monospaced
LineColor black
}
group {
BackGroundColor cadetblue
LineColor black
LineThickness 2.0
FontSize 11
FontStyle bold
Margin 5
Padding 5
}
}
</style>
nwdiag {

§

Guide de référence du langage PlantUML (1.2025.0) 320 / 580

13.15 Appendix: Test of all shapes on Network diag3anDihGRAMME DE RESEAU AVEC NWDIAG

network DMZ {

address = "y.x.x.

web01 [address
web02 [address

network Internal {
web01;
web02;

db01 [address = "w.

group {

x/24"
"y.x.x.1"];
"y.x.x.2"];

w.w.z", shape = databasel];

description = "long group label";

web01;
web02;
db01;

@enduml

[Ref. QA-14479)]

13.15 Appendix: Test of all shapes on Network diagram (nwdiag)

O@startuml
nwdiag {
network Network {
Actor [shape
Agent [shape

Artifact [shape
Boundary [shape
Card [shape
Cloud [shape
Collections [shape
Component [shape
}
}

@enduml

DMZ
y.X.X.X/24

Internal

= actor]

= agent]

= artifact]

= boundary]

= card]

= cloud]

= collections]
= component]

¢
&« Guide de référence du langage PlantUML (1.2025.0)

321 / 580

13.15 Appendix: Test of all shapes on Network diag3anDihGRAMME DE RESEAU AVEC NWDIAG

MNetwork €
O ‘
P T,
—I_ Agent Artifa:tlEl (- Card ll_r Cloud : Collections -‘ Component
AN Boundary St T
Actor
@startuml
nwdiag {
network Network {
Control [shape = control]
Database [shape = database]
Entity [shape = entity]
File [shape = file]
Folder [shape = folder]
Frame [shape = frame]
Hexagon [shape = hexagon]
Interface [shape = interface]
}
}
@enduml
MNetwork L i ‘ J
J & 0 M B R a0
Cor_ltrol ?ftﬁai? EI'I?)’ Folder S Interface
@startuml
nwdiag {
network Network {
Label [shape = label]
Node [shape = node]
Package [shape = package]
Person [shape = person]
Queue [shape = queue]
Stack [shape = stack]
Rectangle [shape = rectangle]
Storage [shape = storage]
Usecase [shape = usecase]
}
}
@enduml
Network T

1 il

— J\ e I ™
Label Node Package | ra | | Queue | | Stack Rectangle l,‘\“‘_s_tnragf/u
L A

TODO: FIXME ol ollilevel 0 Overlap of label for folder olli olli level 0 Hexagon shape is miss-
ing olli ol

§

Guide de référence du langage PlantUML (1.2025.0) 322 / 580

13.15 Appendix: Test of all shapes on Network diag3anDihGRAMME DE RESEAU AVEC NWDIAG

O@startuml

nwdiag {

network Network {

Folder [shape = folder]
Hexagon [shape = hexagon]
}

}

@enduml

Metwork L

@startuml
nwdiag {
network Network {

Folder

Hexagon

Folder [shape = folder, description = "Test, long long label\nTest, long long label"]
Hexagon [shape = hexagon, description =

}
}

Q@enduml

"Test, long long label\nTest, long long label"]

Metwork L

Test

Test

long long label

long long label

TODO: FIXME

§

Guide de référence du langage PlantUML (1.2025.0)

Test
long long label
Test
long long label

323 / 580

14 SALT (WIREFRAME)

14 Salt (Wireframe)

Salt est un sous-projet de PlantUML qui peut vous aider a concevoir une interface graphique ou une
page web Wireframe d’un site web ou schéma d’une page ou plan d’un écran.

Il est tres utile pour concevoir des interfaces graphiques, des schémas et des plans. Il permet d’aligner
les structures conceptuelles sur la conception visuelle, en mettant 'accent sur la fonctionnalité
plutoét que sur P’esthétique. Les wireframes, qui sont au coeur de ce processus, sont utilisés dans
diverses disciplines.

Les développeurs, les concepteurs et les professionnels de I'expérience utilisateur les utilisent pour visu-
aliser les éléments d’interface et les systémes de navigation, et pour faciliter la collaboration. Ils
varient en fidélité, des croquis peu détaillés aux représentations tres détaillées, cruciales pour le proto-
typage et la conception itérative. Ce processus collaboratif integre différentes expertises, de ’analyse
commerciale a la recherche sur les utilisateurs, garantissant que la conception finale s’aligne a la
fois sur les exigences de I’entreprise et de 'utilisateur.

14.1 Composants de base
Une fenétre doit commencer et finir par une accolade.
Vous pouvez ensuite définir :

e un bouton en utilisant [et],

e un bouton radio en utilisant (et),

e une case a cocher en utilisant [et],

e une zone de texte utilisateur en utilisant ",

o une liste déroulante en utilisant ~.

@startsalt

{
Just plain text
[This is my button]
() Unchecked radio
(X) Checked radio
[] Unchecked box
[X] Checked box
"Enter text here "
“This is a droplist”™

}

Q@endsalt

Just plain text
[This is my button]

O Unchecked radio
® Checked radio
O Unchecked box
Checked box
Enter text here

[This is a droplist |v]

14.2 Text area

Here is an attempt to create a text area:

@startsalt

{+
This is a long
text in a textarea

§

Guide de référence du langage PlantUML (1.2025.0) 324 / 580

14.3 Ouvrir, fermer une liste déroulante 14 SALT (WIREFRAME)

}
@endsalt
L'I'his isalong
ext in a textarea
Note:

o the dot (.) to fill up vertical space;

o the last line of space (" ") to make the area wider.
[Ref. QA-14765]
Then you can add scroll bar:

@startsalt

{s1
This is a long
text in a textarea

}
Q@endsalt

|;rhi5 isalong
ext in a textarea

@startsalt

{s-
This is a long
text in a textarea

}
Q@endsalt

L'I'his isalong
ext in a textarea

4] [»]

14.3 Ouvrir, fermer une liste déroulante
Vous pouvez ouvrir une liste déroulante, en ajoutant des valeurs entourées de ~, comme :

@startsalt

{
“This is a closed droplist” |
“This is an open droplist™" item 177 item 27 |
“This is another open droplist™ item 17 item 27

}
@endsalt
|Thi5 is a closed droplist |‘l’| This is an open droplist ¥||This is another open droplist ¥
item 1 item 1
itern 2 itern 2

«
&« Guide de référence du langage PlantUML (1.2025.0) 325 / 580

14.4 Utilisation de la grille [| et #, !, -, +]

14 SALT (WIREFRAME)

[Réf. QA-418])

14.4 Utilisation de la grille [| et #, !, -, +]

Un tableau est automatiquement créé lorsque vous utilisez une parenthése ouvrante {. Et vous devez

utiliser | pour séparer les colonnes.

Par exemple

@startsalt

{
Login | "MyName "
Password | "xxxx "
[Cancell | [OK]

}

@endsalt

Login MyName

Password ™

Juste apres le crochet ouvrant, vous pouvez utiliser un caractere pour définir si vous voulez dessiner des

lignes ou des colonnes de la grille

Symbole | Résultat

Pour afficher toutes les lignes verticales et horizontales

! Pour afficher toutes les lignes verticales

- Pour afficher toutes les lignes horizontales

+ Pour afficher les lignes externes
O@startsalt
{+

Login | "MyName "

Password | "sx*x* "

[Cancell | [OK]
}
Q@endsalt

Login MyName

Password ***

I CanDeI” OK l

14.5 Regroupement de champs

Plus d’information ici

@startsalt

{""My group box"
Login | "MyName "
Password | "xxxx "
[Cancel]l] | [0K 1]

}

@endsalt

§

My group box:
Login MyName
Password ****

Guide de référence du langage PlantUML (1.2025.0)

326 / 530

14.6 Utilisation des séparateurs 14 SALT (WIREFRAME)

14.6 Utilisation des séparateurs
Vous pouvez utiliser de nombreuses lignes horizontales en tant que séparateur.

@startsalt

{
Textl

"Some field"

Note on usage

Another text

[0k]
}
Q@endsalt

Text1

Some field

Note on usage
Another text

14.7 Arbre (structure arborescente) [T]

Pour faire un arbre ou une structure arborescente, vous devez commencer avec {T et utiliser + pour
signaler la hiérarchie.

@startsalt

{

{T

+ World

++ America
+++ Canada
+++ USA
++++ New York
++++ Boston
+++ Mexico
++ Europe
+++ Italy
+++ Germany
++++ Berlin
++ Africa

}

}

@endsalt

‘World
— America
— Canada

USA
} Mew Yark

Boston
— Mezico
¢ Europe
— ltaly
—LGE rmany
Berlin
— Africa

§

Guide de référence du langage PlantUML (1.2025.0) 327 / 580

14.8 Arbre et Tableau [T]

14 SALT (WIREFRAME)

14.8 Arbre et Tableau [T]

Vous pouvez combiner des arbres avec des tableaux.

@startsalt
{

{T

+Region

+ World

++ America
+++ Canada
+++ USA
++++ NYC
++++ Boston
+++ Mexico
++ Europe
+++ Italy
+++ Germany
++++ Berlin
++ Africa

}

}

Q@endsalt

Population
7.13 billion
964 million
35 million
319 million
8 million
617 thousand
117 million
601 million
61 million
82 million
3 million
1 billion

Et ajouter des lignes

@startsalt
{

== with T!
{T!
+Region

+ World

++ America

}

== with T-
{T-
+Region

+ World

++ America

3

== with T+
{T+
+Region

+ World

++ America

}

§

Population
7.13 billion
964 million

Population
7.13 billion
964 million

Population
7.13 billion
964 million

Age
30
30
30
30
30
30
30
30
30
30
30
30

Region Population
World 7.13 billion
7 America 964 million
— Canada 35 million

USA 319 million
} NYC 8 million

Boston 617 thousand
— Mezico 117 million
¢ Europe G01 milion
— Italy 61 million
—T_Gerrnarr'_.r 82 million
Berlin 3 million

— Africa 1 billion

Age
30
30

Age
30
30

Age
30
30

Guide de référence du langage PlantUML (1.2025.0)

328 / 530

14.9 Accolades délimitantes [{, }] 14 SALT (WIREFRAME)

== with T#

{T#
+Region | Population | Age
+ World | 7.13 billion | 30
++ America | 964 million | 30
}
+
Q@endsalt
with T!
Region Population | Age
‘World 7.13 billion | 30
America | 964 million | 30
with T-

Region Population Age
7 World 7.13 hillion 30
L America 964 million 30

with T+
Region Population Age

‘World 7.13 billion 30
America 964 million 30

with T#

Region Population | Age
7 World 7.13 billion | 30
L America [964 million | 30

[Réf. QA-1265)

14.9 Accolades délimitantes [{, }]

Vous pouvez définir des sous-éléments en créant une accolade ouvrante.

@startsalt
{
Name | " "
Modifiers: | { (X) public | () default | () private | () protected
[1 abstract | [] final | [1 static }
Superclass: | { "java.lang.Object " | [Browse...] }
}
Q@endsalt
Name

Maodifiers: @ public O default O private O protected
O abstract[d final [static

Superclass: java.ang.Object :

14.10 Ajout d’onglet [/]

Vous pouvez ajouter des onglets avec la notation {/. Notez que vous pouvez utiliser du code HTML pour
avoir un texte en gras.

@startsalt

{+

{/ General | Fullscreen | Behavior | Saving }
{

{ Open image in: | ~“Smart Mode~ }

[X] Smooth images when zoomed
[X] Confirm image deletion
[1 Show hidden images

§

Guide de référence du langage PlantUML (1.2025.0) 329 / 580

14.11 Utilisation de menu [*]

14 SALT (WIREFRAME)

}
[Closel
}
Q@endsalt

General |_| Fullscreen |_|Behavior |_|Saving |_

Open image in:|Smart Mode [V

¥ Smoaath images when zoomed
confirm image deletion
O Show hidden images

Close

Les onglets peuvent également étre

@startsalt

{+

{/ General
Fullscreen
Behavior
Saving } |

{

orientés verticalement:

{ Open image in: | “Smart Mode~ }

[X] Smooth images when zoomed
[X] Confirm image deletion

[] Show hidden images
[Close]

}

}

@endsalt

neral Openimage in: u

mooth images when zoome
Smaoth images whe d
¥ Confirm image deletion
ehavior o Show hidden images

aving

ullscreen

14.11 Utilisation de menu [*]

Vous pouvez ajouter un menu en utilisant la notation {*

@startsalt
{+

{* File | Edit | Source | Refactor }
{/ General | Fullscreen | Behavior | Saving }

{

{ Open image in: | “Smart Mode™ }

[X] Smooth images when zoomed
[X] Confirm image deletion

[] Show hidden images

}

[Close]

}

Q@endsalt

§

Guide de référence du langage PlantUML (1.2025.0)

330 / 580

14.11 Utilisation de menu [*]

14 SALT (WIREFRAME)

File Edit Source Refactor

General |_| Fullscreen |_|Behavinr |_|Sa'.ring |_

Open image in:|Smart Mode _[¥]

¥ smoath images when zoomed
confirm image deletion
O Show hidden images

Close

Il est également possible d’ouvrir un menu

@startsalt

{+

{* File | Edit | Source | Refactor

Refactor | New | Open File | - | Close | Close All }

{/ General | Fullscreen | Behavior | Saving }
{

{ Open image in: | “Smart Mode™ }

[X] Smooth images when zoomed

[X] Confirm image deletion

[1 Show hidden images

3

[Close]

}

Q@endsalt

File Edit Source Refactor]
General |_| FulscreefNew ior [|Saving |_
Open image in:|£f:":'erI F'IEE
¥ Smoath images e

Elose All
confirm image deEnon

O Show hidden images
Close

med

Comme il est possible d’ouvrir une liste déroulante

Ostartsalt

{+

{* File | Edit | Source | Refactor }

{/ General | Fullscreen | Behavior | Saving }
{

{ Open image in: | ~“Smart Mode™"Normal Mode~ }
[X] Smooth images when zoomed

[X] Confirm image deletion

[1 Show hidden images

¥

[Close]

}

Q@endsalt

File Edit Source Refactor
General |_| Fullscreen |_|Behavinr |_|Sa'.ring |_
Open image in:[Smart Mode
Smooth imaMormal Mode
confirm image deletion
O Show hidden images

Close

[Réf. QA-418]]

§

Guide de référence du langage PlantUML (1.2025.0)

331 / 580

14.12 Tableaux avancés 14 SALT (WIREFRAME)

14.12 Tableaux avancés

Vous pouvez utiliser deux notations spéciales pour les tableaux :
e x pour indiquer que la cellule de gauche peut s’étendre sur l'actuelle
e . pour indiquer une cellule vide

@startsalt
{#
| Column 2 | Column 3
Row header 1 | value 1 | value 2
Row header 2 | A long cell | *
}
@endsalt

Column 2|Column 3
Row header 1jvalue 1 |value 2
Row header 2|4 long cell

14.13 Barres de défilement [S, SI, S-]

Vous pouvez utiliser la commande {S pour afficher les barres de défilement comme dans les exemples
suivants :

e {S : barres de défilement verticale et horizontale

@startsalt
{s

Message

}
Q@endsalt

Message

LD

e {SI : barre de défilement verticale seulement

O@startsalt
{s1
Message

}
Q@endsalt

Message

e {S-: barre de défilement horizontale seulement

«
&« Guide de référence du langage PlantUML (1.2025.0) 332 / 580

14.14 Couleurs

14 SALT (WIREFRAME)

@startsalt

{s-

Message

}

@endsalt

Message

14.14 Couleurs

Il est possible de modifier la couleur du texte du widget

@startsalt

{

<color:Blue>Just plain text

[This is my default button]
[<color:green>This is my green button]
[<color:#9a9a9a>This is my disabled button]

(]

<color:red>Unchecked box

[X] <color:green>Checked box

"Enter text here "

“This is a droplist”™

“<color:#9a%a%a>This is a disabled droplist”™
“<color:red>This is a red droplist”™

3

@endsalt

Just plain text

[This is my default button]

[This is my green buttan]

()

O Unchecked box

Checked box

Enter text here ,

[This is a droplist [v]

| v
|Th|5 is & red droplist |!’|

[Ref. QA-12177)

14.15 Creole on Salt
You can use Creole or HTML Creole on salt:
@startsalt
{{"==Creole
This is **bold**
This is //italics//
This is ""monospaced""
This is —--stricken-out--
This is __underlined__

§

Guide de référence du langage PlantUML (1.2025.0)

333 / 580

14.15 Creole on Salt

14 SALT (WIREFRAME)

This is ~~wave-underlined~~
--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon

Use image

H

{"HTML Creole
This is bold

This
This
This
This
This
This
This
This

is
is
is
is
is
is
is
is

<i>italics</i>

<font:monospaced>monospaced

<s>stroked</s>
<u>underlined</u>
<w>waved</w>
<s:green>stroked</s>
<u:red>underlined</u>
<w:#0000FF>waved</w>

—-- other examples --

This is <color:blue>Blue</color>
This is <back:orange>0Orange background</back>

This is <size:20>big</size>

T

{"Creole line
You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..

Or dotted title
//and title... //
==Title==
Or double-line title
——Another title--

Or single-line title

Enjoy!
H

{"Creole list item
**xtest list 1*x

* Bullet list

* Second item

*x Sub item

**x* Sub sub item

* Third item

xtest list 2%x

Numbered list

Second item

Sub item

Another sub item
Third item

T

{"Mix on salt
==<color:Blue>Just plain text
[This is my default button]

[<color:green>This is my green button]
[--—<color:#9a9a9a>This is my disabled button--]

«
&« Guide de référence du langage PlantUML (1.2025.0)

<img:https://plantuml.com/logo3.png>

334 / 530

14.16 Pseudo sprite [«, »] 14 SALT (WIREFRAME)

[1 <size:20><color:red>Unchecked box

[X] <color:green>Checked box

"//Enter text here// "

“This is a droplist”™

“<color:#9a9a9a>This is a disabled droplist”™
“<color:red>This is a red droplist”

1
Q@endsalt
rCreole TML Creole Creole line Creole list itern Mix on salt
This is bold This is bold ou can have horizontal lineftest list 1 Just plain text
This is italics This is italics . * Bullet list —
Or double |
This is monospaced This is monospaced rdeu Ine * Second item [This is my default button]
Thils i ateelkaaeaut This is strelad Or strong line * Sub item [This is my green button]
This is underlined This is underlined . * Sub sub item [
This is wave-underlined This is waved Or dotted line * Third item s
This is oo long ;:‘5 s o8 deekedl') Or dotted fitle test list 2 O Unchecked box
This is a v icon !5 !sw and title... 1. Numbered list #] Checked box
This is waved i s dit Enter text h
Or double-line title -=econd fem —TEr ex e '
This is Blue 1. Sub item This is a droplist |-'|
This is Drange background|/Or single-line title 1. Anather sub item]
__bi Enjoy! 1. Third item
This is |g This is a red droplist |1’|
Use image :

14.16 Pseudo sprite [«, »]

En utilisant << et >>, vous pouvez définir un dessin de type pseudo-sprite ou sprite et le réutiliser
ultérieurement

O@startsalt

{

[X] checkbox|[] checkbox

() radio | (X) radio

This is a text|[This is my button] |This is another text
"A field"|"Another long Field"|[A button]

<<folder

XXXXX......
X...X.o.....
XXXXXXXXXX.
D X.
D N X.
D X.
). X.
XXXXXXXXXX.

>>|<color:blue>other folder|<<folder>>
“Droplist”™

}

@endsalt

¥ checkbox [checkbox
O radio ® radio
This is a text [This is my button] This is another text

Afield . Anatherlong Field ,

= other folder =

Dropiist__[¥]

§

Guide de référence du langage PlantUML (1.2025.0) 335 / 580

14.17 Openlconic 14 SALT (WIREFRAME)

[Réf. QA-5849]

14.17 Openlconic

Openlconic is an very nice open source icon set. Those icons have been integrated into the creole parser,
so you can use them out-of-the-box.

You can use the following syntax: <&ICON_NAME>.

Ostartsalt
{
Login<&person> | "MyName "
Password<&key> | "kk*x "
[Cancel <&circle-x>] | [OK <&account-login>]
3
Q@endsalt
Logind MyName
Password# o

[cancele J[ok =)

The complete list is available on Openlconic Website, or you can use the following special diagram:

@startuml
listopeniconic
@enduml

List Open lconic A bel 4 cloud = excerpt = justify-right 1 musical-note
Credit to £ bluetooth a cloudy Z expand-down & key & paperclip
hitps://useiconic.comiopen B bold W code kI expand-left 4 |aptop # pencil
+ baolt o cog 14 expand-right % layers £ people
- account-login M book T collapse-down = expand-up # lightbulb L person
= account-logout R bookmark I collapse-left 2 external-link £ link-broken 0 phone
2 action-redo box kI collapse-right @ eye @ link-intact % pie-chart
r action-undo & briefcase = collapse-up & eyedropper £ list-rich ¥ pin
= align-center £ british-pound # command E file = list 0 play-circle
£ align-left B browser W comment-square & fire + location + plus
= align-right # brush @ compass I flag & lock-locked & power-standby
& aperture # bug 0 contrast ¥ flash & lock-unlocked & print
4 arrow-bottom * bullhorn = copywriting = folder “+ |oop-circular M project
© arrow-circle-bottom E calculator & credit-card ¥ fork @ loop-square + pulse
@ arrow-circle-left B calendar & crop *s fullscreen-enter = loop " puzzle-piece
@ arrow-circle-right & camera-sir @ dashboard % fullscreen-exit G magnifying-glass ? question-mark
@ arrow-circle-top = caret-bottom 4 data-transfer-download @ globe @ map-marker A rain
+ arrow-left 4 caret-left ¥ data-transfer-upload raph E map X random
=+ arrow-right b caret-right a delete rid-four-up n media-pause C reload
4 arrow-thick-bottom A caret-top w dial grid-three-up = media-play " resize-hoth
+ arrow-thick-left = cart & document = grid-two-up ¢ media-record ¢ resize-height
= arrow-thick-right fa chat $ dollar = hard-drive « media-skip-backward + resize-width
T arrow-thick-top + check " double-quote-sans-left H header » media-skip-forward & rss-alt
t arrow-top « chevron-bottom ¢ double-quote-sans-right v headphones H media-step-backward & ras
il audio-spectrum < chevron-left & double-quote-serif-left ¥ heart i media-step-forward & script
v gudio » chevron-right ** double-quote-serif-right ™ home ® media-stop & share-boxed
? badge A chevron-top 4 droplet & image * medical-cross ~ share
@ ban @ circle-check A giect 8 inbox = menu @ shield
I bar-chart @ circle-x ¢ elevator == infinity ¥ microphone all signal
basket Wl clipboard = gllipses i info - minus T signpost
o battery-empty @ clock = envelope-closed T italic 2 monitor E sortascending
= battery-full # cloud-download & envelope-open = justify-center & moon F sorl-descending
& beaker # cloud-upload £ euro = justify-left + move E spreadsheet

14.18 Ajouter un titre, un en-téte, un pied de page, une légende

@startsalt

title My title

header some header
footer some footer
caption This is caption

§

Guide de référence du langage PlantUML (1.2025.0) 336 / 580

* slar

sun

& tablet

% tag

- tags

‘@ target

E task

& terminal

T text

* thumb-down
thumb-up

timer

transfer

trash

underline
vertical-align-batt
vertical-align-cen
i vertical-align-top
= yvideo

% volume-high

% volume-low

4 volume-off

& warning

T wifi

wrench

X x

¥ yen

@ zoom-in

4 zoom-out

EEilee || & &

14.19 Zoom, DPI 14 SALT (WIREFRAME)

legend
The legend
end legend

{+
Login | "MyName
Password | "xxxx "
[Cancel] | [0K 1]

+

Q@endsalt

My title

Login MyName
Password *™*

ICanDBI” OK l

This is caption

(Voir aussi : Commandes communes)

14.19 Zoom, DPI
14.19.1 Sans zoom (par défaut)

@startsalt
{
<&person> Login | "MyName "
<&key> Password | "sxk*x "
[<&circle-x> Cancel] | [<&account-login> OK]
}
@endsalt

& Login MyMame

Password el

| ocancal J[20k)

14.19.2 Scale
Vous pouvez utiliser la commande scale pour zoomer I'image générée.

Vous pouvez utiliser un nombre ou une fraction pour définir le facteur d’échelle. Vous pouvez également
indiquer soit la largeur, soit la hauteur (en pixels). Et vous pouvez également donner & la fois la largeur
et la hauteur : I'image est mise a ’échelle pour s’adapter & la dimension spécifiée

@startsalt
scale 2
{
<gperson> Login | "MyName "
<&key> Password | "xkkx "
[<&circle-x> Cancel] | [<&account-login> OK]
¥
Q@endsalt

§

Guide de référence du langage PlantUML (1.2025.0) 337 / 580

14.20 Include Salt “on activity diagram” 14 SALT (WIREFRAME)

& Login MyName .
Password Rl)

Q Cancel 21 OK

(Voir aussi : [Zoom sur les commandes communes](commons#zwbyrgaxs0mpk362kjbn))

14.19.3 DPI

Vous pouvez également utiliser la commande skinparam dpipour zoomer l'image générée

@startsalt
skinparam dpi 200
{
<&person> Login | "MyName "
<&key> Password | "kx*x "
[<&circle-x> Cancel] | [<&account-login> 0K]
}
Q@endsalt

& Login MyName |

*kkk

Password) :

® Cancel =1 OK

14.20 Include Salt ”on activity diagram”

You can read the following explanation.

@startuml
() —=> "
{{

salt

{+

an example
choose one option
()one

Otwo

[ok]

X

1}

" as choose

choose -right-> "

b

salt

{+

please wait
operation in progress
<&clock>

[cancel]

3

3}

" as wait

«
&« Guide de référence du langage PlantUML (1.2025.0)

338 / 580

14.20 Include Salt “on activity diagram”

14 SALT (WIREFRAME)

wait -right-> "
{{

salt

{+

success
congratulations!
[ok]

}

13

" as success

wait -down-> "
{{

salt

{+

error
failed, sorry
[ok]

}

1}

Q@enduml

n example
hoose one option

QO ane
O two

Mm

It can also be combined with define macro.

@startuml

lunquoted procedure SALT($x)
"{{

salt
%invoke_procedure("_"+$x)
" as $x

!endprocedure

Iprocedure _choose()
{+

an example
choose one option
()one

Otwo

[ok]

3

!endprocedure

§

please wait
loperation in progre
&

ror
ailed, sorry,

Guide de référence du langage PlantUML (1.2025.0)

UcCcess

ngratulations!

339 / 580

14.21 Include salt “on while condition of activity diagram” 14 SALT (WIREFRAME)

Iprocedure _wait()

{+

please wait
operation in progress
<&clock>

[cancel]

X

!endprocedure

Iprocedure _success()
{+

success
congratulations!

[ok]

}

!endprocedure

Iprocedure _error()
{+

error

failed, sorry

[ok]

}

!endprocedure

(*) --> SALT(choose)
-right-> SALT(wait)

wait -right-> SALT(success)
wait -down-> SALT(error)
@enduml

n example
hoose one option plasse wait e
O one %DBFETIGH In progress| ngratulations!
O two
cancel
'
- - -

ror
ailed, sorry,

14.21 Include salt ”on while condition of activity diagram?”
You can include salt on while condition of activity diagram.

@startuml

start

while (\n{{\nsalt\n{+\nPassword | "x*x*x* "\n[Cancel]l] | [0K JI}\n}}\n) is (Incorrect)
:log attempt;
:attempt_count++;
if (attempt_count > 4) then (yes)

§

Guide de référence du langage PlantUML (1.2025.0) 340 / 580

14.22 Include salt “on repeat while condition of activity diagram” 14 SALT (WIREFRAME)

:increase delay timer;
:wait for timer to expire;
else (no)
endif
endwhile (correct)
:log request;
:disable service;
@enduml

b

[|Password ***
comact

I

Incorrect
¥

-, \-
| log attempt |

N

I %
| attempt_count++ |
p

|l increase delay timer |
\ /

Y

Y

e Ry
| wait for timer to expire |
J

-I- -\u
| log request |
| disable service |
\ Y,

[Ref. QA-85,7]

14.22 Include salt ”on repeat while condition of activity diagram”
You can include salt on ’repeat while’ condition of activity diagram.

@startuml
start
repeat :read data;
:generate diagrams;
repeat while (\n{{\nsalt\n{""Next step"\n Do you want to continue? \n[Yes]|[No]\n}\n}}\n)
stop
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 341 / 580

14.23 Skinparam

14 SALT (WIREFRAME)

[Ref. QA-1/287]

14.23 Skinparam

[/-read data-\](i
2

ra N

| generate diagrams |

MNext step
o you want to continue?

i i | L

Yes

®

You can use [only] some skinparam command to change the skin of the drawing

Some example:

@startsalt

skinparam Backgroundcolor palegreen

{+
Login | "MyName "
Password | "sk*x "
[Cancel] | [OK 1]

¥

Q@endsalt

@startsalt

skinparam handwritten true

{+
Login | "MyName "
Password | "k¥xx* "
[Cancell | [OK 1

X

@endsalt

TODO: FIXME FYI, some other skinparam does not work with salt, as:

Login MyName
Password ****

ICanDBI" OK I

@startsalt
skinparam defaultFontName monospaced
{+
Login | "MyName "
Password | "sk*x "
[Cancell | [OK 1
X
Q@endsalt

§

Guide de référence du langage PlantUML (1.2025.0)

342 / 580

14.24 Style 14 SALT (WIREFRAME)
Login MyName
Password ***
ICanDBI” OK l

14.24 Style

You can use [only] some style command to change the skin of the drawing.

Some example:

@startsalt
<style>
saltDiagram {

BackgroundColor palegreen

}

</style>

{+
Login | "MyName "
Password | "xxxx "
[Cancel] | [0K 1]

}

@endsalt

TODO: FIXME FYI, some other style does not work with salt, as:

@startsalt

<style>

saltDiagram {
Fontname Monospaced
FontSize 10
FontStyle italic
LineThickness 0.5
LineColor red

}

</style>

{+
Login | "MyName "
Password | "xxxx "
[Cancel]l | [OK]

}

Q@endsalt

[Ref. QA-13/60]

§

Login MyName

Password ***

I CanDeI" OK I

Login MyMName

Password **

Guide de référence du langage PlantUML (1.2025.0)

343 / 530

15 ARCHIMATE

15 ArchiMate

ArchiMate est un langage de modélisation d’architecture d’entreprise ouvert et indépendant qui
prend en charge la description, 'analyse et la visualisation de ’architecture a l'intérieur et a I'extérieur
des domaines d’activité. Un diagramme ArchiMate fournit une représentation structurée des dif-
férents composants d’une entreprise, de leurs relations et de leur intégration avec l'infrastructure
informatique.

ArchiMate et UML sont tous deux des langages de modélisation, mais ils ont des objectifs différents.
UML est principalement utilisé pour la conception de logiciels et la modélisation de systemes, en se
concentrant sur les aspects structurels et comportementaux des systemes. En revanche, ArchiMate est
congu pour I'architecture d’entreprise, offrant une vision holistique des couches organisationnelles,
informationnelles et techniques d’une entreprise.

15.1 Mot-clé Archimate

Vous pouvez utiliser le mot-clé archimate pour définir un élément. De facon optionnelle, un stéréotype
peut indiquer une icéne & afficher. Certains noms de couleurs (Business, Application, Motivation,
Strategy, Technology, Physical, Implementation) sont aussi disponibles.

@startuml
archimate #Technology "Serveur VPN" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange
@enduml

g
Serveur VPN GO
m =

15.2 Jonctions Archimate
A Taide du mot-clé circle et du préprocesseur, vous pouvez déclarer des jonctions.

@startuml
!define Junction_Or circle #black
!define Junction_And circle #whitesmoke

Junction_And JunctionAnd
Junction_Or JunctionOr

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange
GO -up-> JunctionOr

STOP -up-> JunctionOr
STOP -down-> JunctionAnd
WAIT -down-> JunctionAnd
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 344 / 580

15.3 Exemple 1 15 ARCHIMATE

)
VPN Server
JunctionOr
GO WAIT

P
[}]
A

JunctionAnd

15.3 Exemple 1

@startuml

skinparam rectangle<<behavior>> {

roundCorner 25

X

sprite $bProcess jar:archimate/business-process

sprite $aService jar:archimate/application-service
sprite $aComponent jar:archimate/application-component

rectangle "Handle claim" as HC <<$bProcess>><<behavior>> #Business

rectangle "Capture Information" as CI <<$bProcess>><<behavior>> #Business

rectangle "Notify\nAdditional Stakeholders" as NAS <<$bProcess>><<behavior>> #Business
rectangle "Validate" as V <<$bProcess>><<behavior>> #Business

rectangle "Investigate" as I <<$bProcess>><<behavior>> #Business

rectangle "Pay" as P <<$bProcess>><<behavior>> #Business

HC *-down- CI
HC *-down- NAS
HC *-down- V
HC *-down- I
HC *-down- P

CI -right->> NAS
NAS -right->> V
V -right->> I
I -right->> P

rectangle "Scanning" as scanning <<$aService>><<behavior>> #Application

rectangle "Customer admnistration" as customerAdministration <<$aService>><<behavior>> #Application
rectangle "Claims admnistration" as claimsAdministration <<$aService>><<behavior>> #Application
rectangle Printing <<$aService>><<behavior>> #Application

rectangle Payment <<$aService>><<behavior>> #Application

scanning -up—> CI
customerAdministration -up-> CI
claimsAdministration -up-> NAS
claimsAdministration -up-> V
claimsAdministration -up-> I
Payment -up-> P

Printing -up—> V
Printing -up-> P

§

Guide de référence du langage PlantUML (1.2025.0) 345 / 580

15.4 Exemple 2 15 ARCHIMATE

rectangle
rectangle
rectangle
rectangle

"Document\nManagement\nSystem" as DMS <<$aComponent>> #Application
"General\nCRM\nSystem" as CRM <<$aComponent>> #Application

"Home & Away\nPolicy\nAdministration" as HAPA <<$aComponent>> #Application
"Home & Away\nFinancial\nAdministration" as HFPA <<$aComponent>> #Application

DMS .up.|> scanning
DMS .up.|> Printing
CRM .up.|> customerAdministration
HAPA .up.|> claimsAdministration
HFPA .up.|> Payment

legend left
Example from the "Archisurance case study" (OpenGroup).

See

<$bProcess> :business process

<$aService> : application service

<$aComponent> : application component

endlegend
Q@enduml
N .
Handecbhn
:) .
e = ™ . -
‘ = . = = = (o
| Capture Information |1 yjtional Stakeholders) ﬁ{? Pay)
(o ' ' =
| Customer admnistration | Scanning Clalmsadmmstrahon) Prmtmg Paymem

i o % -

I - I |
[~ |]

.l £] .l £]
General Home & Away Document Home & Away
CRM Policy Management Financial

System Administration System Administration

See

' ™y
Example from the "Archisurance case study" (OpenGroup).

=> :business process

o : application service

£] : application component

15.4 Exemple 2

@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 346 / 580

15.5 Liste des sprites possibles

15 ARCHIMATE

skinparam roundcorner 25

rectangle "Capture Information"

@enduml

=

Capture Information

e

A

15.5 Liste des sprites possibles

as CI <<$archimate/business-process>> #Business

Vous pouvez afficher tous les sprites disponibles pour Archimate & I’aide du diagramme suivant:

@startuml
listsprite
@enduml

List Current Sprites
Credit to

hitp:/Mmrww.archimatetool.com

archimate :

- access

2 activity
actor
aggregation

{ifrapplication-collaboration

& | application-component

B application-data-object
application-event

ﬁ application-function

[} application-interaction

—Crapplication-interface

= application-process

application-service
assessment-filled
assessment

o assignment

~ association-unidirect
association

2 business-activity
business-actor

i business-collaboration

B business-contract

7 business-event
business-function

{0 business-interaction

- husiness-interface

<7 business-location

£ business-meaning

[business-object

= business-process

1 business-product

] business-representation

= business-role

2 business-service

> business-value

i3 collaboration

&3 communication-path
component

o compasition

L7 constraint-filled

A7 constraint

H contract

[deliverable-filled

[deliverable

device
driver-filled
driver

event
/’ flowe
(] function
£ gap-filled

— gap
@ goalfilled
e goal

] implementation-deliverable

implementation-event
= implementation-gap
= implementation-plateau

[implementation-workpackage

2 influence
{0 interaction
- interface-required

15.6 ArchiMate Macros

15.6.1 Archimate Macros and Library

A list of Archimate macros are defined Archimate-PlantUML here which simplifies the creation of Archi-

=] interface-symmetric
—interface
== junction-and
junction-or
2= junction
location

% meaning
motivation-assessment
7 motivation-constraint
@ motivation-driver
mativation-goal
£ motivation-meaning
motivation-outcome
motivation-principle
7 motivation-requirement
= motivation-stakeholder
> motivation-value
network
@ node

E object

= physicaldistribution-network

{é} physicalequipment
physical-facility
physical-material

= plateau

m principle-filed

[1] principle

= process

1 product

,N realisation

[representation

L7 requirement-filled

L7 requirement

= role

D service

s serving

A specialisation
specialization

=2 stakeholder-filled

strategy-capability
strategy-course-of-action

[T} strategy-resource

Z_» strategy-value-stream

¥ system-software

[technology-artifact

il techrology-collaboration

oy technology-communication-network
&3 technology-communication-path

H technology-device
technology-event
technology-function

=2 technology-infra-interface

D technology-infra-service

[technology-interaction

2 technology-interface

28 technology-network

(T technology-node

£3 technology-path

= technology-process

O technology-service

F tlechnology-system-software

triggering
A" used-by
rvalue
(O workpackage-filed

Mate diagrams, and Archimate is natively on the Standard Library of PlantUML.

15.6.2 Archimate elements

Using the macros, creation of ArchiMate elements are done using the following format: Category_ElementName (nameOf The

"description")

For example:

e To define a Stakeholder element, which is part of Motivation category, the syntax will be Motivation_Stakeholder (S

"Stakeholder Description"):

@startuml

linclude <archimate/Archimate>

§

Guide de référence du langage PlantUML (1.2025.0)

347 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

Motivation_Stakeholder (StakeholderElement, "Stakeholder Description")

@enduml
=
Stakeholder Description

e To define a Business Service element, Business_Service(BService, "Business Service"):

@startuml

linclude <archimate/Archimate>
Business_Service(BService, "Business Service")
Q@enduml

./. .-1
—
Business Service

.

15.6.3 Archimate relationships

The ArchiMate relationships are defined with the following pattern: Rel_RelationType(fromElement,
toElement, "description") and to define the direction/orientation of the two elements: Rel_RelationType_Direction
toElement, "description")

The RelationTypes supported are:
e Access
o Aggregation
e Assignment
e Association
¢ Composition
o Flow
e Influence
o Realization
e Serving
e Specialization
o Triggering
The Directions supported are:
« Up
e Down
o Left
o Right
For example:

e To denote a composition relationship between the Stakeholder and Business Service defined above,
the syntax will be

Rel_Composition(StakeholderElement, BService, "Description for the relationship")

O@startuml

linclude <archimate/Archimate>

Motivation_Stakeholder(StakeholderElement, "Stakeholder Description")
Business_Service(BService, "Business Service")
Rel_Composition(StakeholderElement, BService, "Description for the relationship")

§

Guide de référence du langage PlantUML (1.2025.0) 348 / 580

15.6 ArchiMate Macros 15 ARCHIMATE

=
Stakeholder Description

4

@enduml

Description for the
relationship

—
Business Service

I

..

e Unordered List ItemTo orient the two elements in top - down position, the syntax will be
Rel_Composition_Down(StakeholderElement, BService, "Description for the relationship")

O@startuml

linclude <archimate/Archimate>

Motivation_Stakeholder(StakeholderElement, "Stakeholder Description")
Business_Service(BService, "Business Service")
Rel_Composition_Down(StakeholderElement, BService, "Description for the relationship")

Q@enduml
o
Stakeholder Description

*

Description for the
relationship

1)

-
Business Service

. A

'd

15.6.4 Appendice: Examples of all Archimate RelationTypes

@startuml

left to right direction

skinparam nodesep 4

linclude <archimate/Archimate>
Rel_Triggering(ils, j15, Triggering)
Rel_Specialization(il4, j14, Specialization)
Rel_Serving(il3, j13, Serving)
Rel_Realization(il2, j12, Realization)
Rel_Influence(ill, j11, Influence)
Rel_Flow(il0, j10, Flow)

Rel_Composition(i9, j9, Composition)
Rel_Association_dir(i8, j8, Association_dir)
Rel_Association(i7, j7, Association)
Rel_Assignment(i6, j6, Assignment)
Rel_Aggregation(ib5, j5, Aggregation)
Rel_Access_w(i4, j4, Access_w)
Rel_Access_rw(i3, j3, Access_rw)
Rel_Access_r(i2, j2, Access_r)
Rel_Access(il, j1, Access)

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 349 / 580

15.6 ArchiMate Macros 15 ARCHIMATE
. - @)
i1 i1
(@) S e O
i2 2
O >0
i3 i3
O e Access W ()
i4 j4
(Oo———Ffagreaaton O
i5 i5
I:—:I. Assignment =_:|
i6 6
' Association Y
i7 i
|:_: Association_dir ::—:
i8 i8
Tl Composition =
i9 i9
Q------ o -0
i10 10
O - e -0
11 11
.\‘}______________B_‘??_'_ifz_?ff_'"?_'f' ________ =)
i12 12
|’:: Serving > ::I
i13 13
|:_: Specialization b:—:
i4 14
O Tragenng =0
i15 15

O@startuml

title ArchiMate Relationships Overview
skinparam nodesep 5

<style>

interface {

§

shadowing 0
backgroundcolor transparent
linecolor transparent
FontColor transparent

Guide de référence du langage PlantUML (1.2025.0)

350 / 580

15.6 ArchiMate Macros

15 ARCHIMATE

}

</style>

linclude <archimate/Archimate>
left to right direction

rectangle Other {
O i14

O j14

}

rectangle Dynamic {
O i10

O j1o

O i15

O ji5

}

rectangle Dependency {
() i13

O j13

O i4

O j4

O i

O ju

O i7

O j7

X

rectangle Structural {
O i9

O j9

O ib

O j5

O i6

O j6

O i12

O j12

X

Rel_Triggering(ilbs, j15, Triggering)
Rel_Specialization(il4, j14, Specialization)
Rel_Serving(il3, j13, Serving)
Rel_Realization(il2, j12, Realization)
Rel_Influence(ill, j11, Influence)
Rel_Flow(il0, j10, Flow)

Rel_Composition(i9, j9, Composition)
Rel_Association_dir(i7, j7, \nAssociation_dir)
Rel_Association(i7, j7, Association)
Rel_Assignment(i6, j6, Assignment)
Rel_Aggregation(i5, j5, Aggregation)
Rel_Access_w(i4, j4, Access_w)
Rel_Access_rw(i4, j4, Access_rw)
Rel_Access_r(i4, j4, Access_r)
Rel_Access(i4, j4, Access)

Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

351 / 580

15.6 ArchiMate Macros

15 ARCHIMATE

ArchiMate Relationships Overview

Structural

Composition

o Aggregation
Assignment
® . >
Realization
-- ==
Dependency

Dynamic

Triggering

L J

Other

Specialization
==

[Adapted from Archimate PR#25]

§

Guide de référence du langage PlantUML (1.2025.0)

352 / 580

16 DIAGRAMME DE GANTT

16 Diagramme de Gantt

Le diagramme de Gantt est un outil puissant utilisé pour la gestion de projets. Il représente visuelle-
ment le calendrier d’un projet, permettant aux responsables et aux membres de ’équipe de voir d’'un
seul coup d’ceil les dates de début et de fin de ’ensemble du projet. Le diagramme affiche les tdches ou
les activités le long d’un axe temporel horizontal, montrant la durée de chaque tache, leur séquence et
la fagcon dont elles se chevauchent ou se déroulent simultanément.

Dans un diagramme de Gantt, chaque tache est représentée par une barre, dont la longueur et la position
refletent la date de début, la durée et la date de fin de la tache. Ce format permet de comprendre
facilement les dépendances entre les taches, lorsqu’une tidche doit étre achevée avant qu’une autre
ne puisse commencer. En outre, les diagrammes de Gantt peuvent inclure des jalons, qui sont des
événements ou des objectifs importants dans la chronologie du projet, marqués par un symbole distinct.

Dans le contexte de la création de diagrammes de Gantt, PlantUML offre plusieurs avantages. Il offre
une approche textuelle de la création de diagrammes, ce qui facilite le suivi des modifications a l'aide
de systémes de controéle des versions. Cette approche est particulierement bénéfique pour les équipes
qui sont déja habituées a des environnements de codage basés sur le texte. La syntaxe de PlantUML
pour les diagrammes de Gantt est simple, ce qui permet des modifications et des mises a jour rapides de
la chronologie du projet. De plus, I’'intégration de PlantUML avec d’autres outils et sa capacité a
générer des diagrammes dynamiquement a partir de texte en font un choix polyvalent pour les équipes
qui cherchent a automatiser et a rationaliser leur documentation de gestion de projet. L’utilisation de
PlantUML pour les diagrammes de Gantt combine donc la clarté et D’efficacité de la planification
visuelle de projet avec la flexibilité et le contrdle d’un systeme basé sur le texte.

16.1 Déclaration des taches
Le Gantt est décrit en langage naturel, a U'aide de phrases trés simples (sujet-verbe-complément).

Taches définies & 1’aide de crochets.

16.1.1 Charge de travail

La charge de travail pour chaque tache est spécifiée a ’aide du verbe requires, indiquant la quantité de
travail nécessaire en termes de jours.

O@startgantt

[Prototype design] requires 15 days

[Test prototype] requires 10 days

-- All example --

[Task 1 (1 day)] requires 1 day

[T2 (5 days)] requires 5 days

[T3 (1 week)] requires 1 week

[T4 (1 week and 4 days)] requires 1 week and 4 days
[T5 (2 weeks)] requires 2 weeks

Q@endgantt

1,234,567, 8910111213 14/15

[Prototype design |
[Test prototype

— All example

[Task 1 (1 day)
T2 (5 days
T3 (1 wask

[T4 (1 week and 4 days) |
[T5 (2 weeks) |
12 3 4 5 6 7 8B 9101112131415

Une semaine est généralement comprise comme une période de sept jours. Toutefois, dans les contextes
ol certains jours sont désignés comme "fermés” (comme les week-ends), une semaine peut étre redéfinie
en termes de jours "non fermés”. Par exemple, si le samedi et le dimanche sont désignés comme fermés,

§

Guide de référence du langage PlantUML (1.2025.0) 353 / 580

16.1 Déclaration des taches 16 DIAGRAMME DE GANTT

une semaine dans ce contexte équivaudra a une charge de travail de cinq jours, correspondant aux jours
de semaine restants.

16.1.2 Start

Leur début est défini a ’aide du verbe start:

Ostartgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

Project starts 2020-07-01

[Prototype design] starts 2020-07-01
[Test prototype] starts 2020-07-16
Q@endgantt

July 2020

Wa Th Fr Sa SuMa Tu Wa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa
12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
[Prototype design |

[Test prototype
We Th Fr Sa SuMo TuWe Th Fr Sa SuMo TuWe Th Fr Sa SuMo Tu We Th Fr Sa
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
July 2020

Ostartgantt
[Prototype design] requires 15 days
[Test prototype]l requires 10 days

[Prototype design] starts D+0
[Test prototype] starts D+15
Q@endgantt

1,234,566 ,7 8,9 10111213 14 15 16 17 18 19 20 21,22 23 24 25
[Prototype design |

[Test prototype
12 3 4 5 6 7 8B 91011121314 1516 17 1819 20 21 22 23 24 25

[Réf. pour la forme D+nn: QA-14494]

16.1.3 Fin

Leur fin est définie a ’aide du verbe end:

Ostartgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

Project starts 2020-07-01
[Prototype design] ends 2020-07-15
[Test prototype] ends 2020-07-25
Q@endgantt

July 2020

Wa Th Fr Sa SuMa Tu Wa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa
12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
[Prototype design |

[Test prototype
We Th Fr Sa SuMo TuWe Th Fr Sa SuMo TuWe Th Fr Sa SuMo Tu We Th Fr Sa
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
July 2020

O@startgantt
[Prototype design] requires 15 days
[Test prototype] requires 10 days

[Prototype design] ends D+14

§

Guide de référence du langage PlantUML (1.2025.0) 354 / 580

16.2 Déclaration sur une ligne (avec la conjonction et) 16 DIAGRAMME DE GANTT

[Test prototype] ends D+24
Q@endgantt

1,234,566 ,7 8,9 10111213 14 15 16 17 18 19 20 21,22 23 24 25
[Prototype design |

[Test prototype
12 3 4 5 6 7 8B 91011121314 1516 17 1819 20 21 22 23 24 25

16.1.4 Début/Fin

Il est possible de définir les deux de maniere absolue, en spécifiant des dates :

O@startgantt

Project starts 2020-07-01

[Prototype design] starts 2020-07-01
[Test prototype] starts 2020-07-16
[Prototype design] ends 2020-07-15
[Test prototype]l ends 2020-07-25

Q@endgantt

July 2020
Wa Th Fr Sa SuMa Tu Wa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa
12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25

[Prototype design |

[Test prototype
We Th Fr Sa SuMo TuWe Th Fr Sa SuMo TuWe Th Fr Sa SuMo Tu We Th Fr Sa
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
July 2020

O@startgantt

[Prototype design] starts D+0
[Test prototype] starts D+15
[Prototype design] ends D+14
[Test prototype] ends D+24
Q@endgantt

1,/2,3,4,5,/6,7,8,91M011121314 1516171818 ,20 21,22 23 24 25
[Prototype design |

[Test prototype
1'2'a'a's'6'7 '8 910111213 14 15 16 17 18 19 20 21 22 23 24 25

16.2 Déclaration sur une ligne (avec la conjonction et)

Il est possible de combiner une déclaration sur une ligne avec la conjonction and

O@startgantt
Project starts 2020-07-01
[Prototype design] starts 2020-07-01 and ends 2020-07-15

[Test prototype] starts 2020-07-16 and requires 10 days
Q@endgantt

July 2020
We Th Fr Sa SuMo TuWe Th Fr Sa SuMo TuWe Th Fr Sa SuMo Tu We Th Fr Sa
1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25

[Prototype design |
|Tastprutotype
Wa Th Fr Sa SuMa Tu Wa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
July 2020

16.3 Ajout de contraintes

Il est possible d’ajouter des contraintes entre les taches

@startgantt
[Prototype design] requires 15 days

§

Guide de référence du langage PlantUML (1.2025.0) 355 / 580

16.4 Noms courts 16 DIAGRAMME DE GANTT

[Test prototype] requires 10 days
[Test prototype] starts at [Prototype design]'s end

Q@endgantt
12 3,45 67 8910111213 14,1516 17 1819 20 21 22 23 24 25
[Prototype design |
brmmpmme
1'2'3'4'5'8'7'8 91011121314 1518 17 18 1920 21 22 23 24 25
@startgantt

[Prototype design] requires 10 days

[Code prototype] requires 10 days

[Write tests] requires 5 days

[Code prototype] starts at [Prototype design]'s end
[Write tests] starts at [Code prototype]'s start

Q@endgantt
12,345, 6,78, 91011121314 151617 1819 20
[Prototype design |
Code prototype
Write tests

12 3 4 5 6 7 8 91011121314 1516817 1818 20

16.4 Noms courts
Il est possible de définir des noms courts pour les tiaches a ’aide du mot-clé as.

O@startgantt

[Prototype design] as [D] requires 15 days
[Test prototype] as [T] requires 10 days
[T] starts at [D]'s end

Q@endgantt

1,/2,3,4,5,/6,7,8,9 1011121314 1516/17 1818 ,20 21,22 23 24 25
[Prototype design |

brmmpmme
1'2'a'a's'6'7 '8 91011121314 15 16 17 18 19 20 21 22 23 24 25

16.5 Tasks with same name
[Starting with V1.2024.6,] it is possible to have multiple tasks with same name.

O@startgantt
Project starts 2020-11-08
[Task 7 days] as [T7] starts at 2020-11-09
[T7] ends at 2020-11-15
[Task 7 days] as [T7bis] starts at 2020-11-09
[T7bis] ends at 2020-11-15
Q@endgantt
November 2020

SuMa Tu We Th Fr Sa Su
B 9 10111213 14 15

Task 7 days
Task 7 days

SulMo TuWe Th Fr Sa Su
& 9 10 1112 13 14 15
Movember 2020

O@startgantt

[SameTaskName] as [T1] lasts 7 days and is colored in pink
[SameTaskName] as [T2] lasts 3 days and is colored in orange
[T1] -> [T2]

Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0) 356 / 580

16.6 Personnaliser les couleurs 16 DIAGRAMME DE GANTT

1,23 ,4,5,86,7 8,910
SameTaskName

SameTaskMName
12 3 4 5 6 7 8B 810

[Ref. QA-12176 and GH-1809)

16.6 Personnaliser les couleurs
Il est également possible de personnaliser les couleurs avec is colored in.

O@startgantt

[Prototype design] requires 13 days

[Test prototype] requires 4 days

[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype]l is colored in GreenYellow/Green
Q@endgantt

1,234 5,6 7,89 1011121314 1516/17

E>I:I Test prototype

12 3 4 5 6 7 8 91011121314 1518 17

16.7 Etat d’achévement

16.7.1 Ajout du pourcentage d’achévement selon

Vous pouvez définir ’état d’achévement d’une téche, par la commande :
o is xx¥% completed
e is xxJ% complete

O@startgantt

[foo] requires 21 days

[foo]l is 40% completed

[bar] requires 30 days and is 10% complete
Q@endgantt

1,23 4,5 6,7 891011121314 15 16 17 18,19 20 21 22 23 24 25 26 27 28 29 30
[foo
[bar
1'2'3'4a's'6'7 '8 'a'1011'12'13'14 1518 17 1819 '20'21 '22 '23 24 ‘25 26 ‘27 '28 '23 ‘30

16.7.2 Changer la couleur de ’achévement (par style)

O@startgantt

<style>
ganttDiagram {
task {
BackGroundColor GreenYellow
LineColor Green
unstarted {
BackGroundColor Fuchsia
LineColor FireBrick
}
}
}
</style>

[Prototype design] requires 7 days
[Test prototype 0] requires 4 days

§

Guide de référence du langage PlantUML (1.2025.0) 357 / 580

16.8 Jalon 16 DIAGRAMME DE GANTT

[Test prototype 10] requires 4 days
[Test prototype 20] requires 4 days
[Test prototype 30] requires 4 days
[Test prototype 40] requires 4 days
[Test prototype 50] requires 4 days
[Test prototype 60] requires 4 days
[Test prototype 70] requires 4 days
[Test prototype 80] requires 4 days
[Test prototype 90] requires 4 days

[Test prototype 100] requires 4 days

[Test prototype 0] starts at [Prototype design]'s end

[Test prototype 10] starts at [Prototype design]'s end
[Test prototype 20] starts at [Prototype design]'s end
[Test prototype 30] starts at [Prototype design]'s end
[Test prototype 40] starts at [Prototype design]'s end
[Test prototype 50] starts at [Prototype design]'s end
[Test prototype 60] starts at [Prototype design]'s end
[Test prototype 70] starts at [Prototype design]'s end
[Test prototype 80] starts at [Prototype design]'s end
[Test prototype 90] starts at [Prototype design]'s end
[Test prototype 100] starts at [Prototype design]'s end

[Test prototype 0] is 0% complete
[Test prototype 10] is 10% complete
[Test prototype 20] is 20% complete
[Test prototype 30] is 30% complete
[Test prototype 40] is 40% complete
[Test prototype 50] is 50% complete
[Test prototype 60] is 60% complete
[Test prototype 70] is 70% complete
[Test prototype 80] is 80% complete
[Test prototype 90] is 90% complete
[Test prototype 100] is 100% complete

Q@endgantt

1,234,567, 8 9101

Pri design
il:| Test prototype 0

+I:| Test prototype 10
i.:| Test prototype 20
i-:| Test prototype 30
i-:| Test prototype 40
I] Test prototype 50
I | et prototype 60
I | Test prototype 7O
[| Test prototype 80
B[| Test prototype 90
W[| Testprototype 100

1'2'3'4'5'68 7' 8 91701

[Ref. QA-8297]
[Ref. QA-15299]

16.8 Jalon

Vous pouvez définir des jalons & I’aide du verbe happen.

§

Guide de référence du langage PlantUML (1.2025.0) 358 / 580

16.9 Hyperliens 16 DIAGRAMME DE GANTT

16.8.1 Jalon relatif (utilisation de contraintes)

O@startgantt

[Test prototype]l requires 10 days

[Prototype completed] happens at [Test prototypel's end
[Setup assembly line] requires 12 days

[Setup assembly line] starts at [Test prototypel's end
Q@endgantt

1,234 56,7 8,9 1011121314 151617 1818 2021 22
[Test prototype |

Praototype comple ted

| Setup assembly line
12 3 4 5 6 7 8 91011121314 1516 17 1B 19 20 21 22

16.8.2 Jalon absolu (utilisation d’une date fixe)

O@startgantt
Project starts 2020-07-01
[Test prototype] requires 10 days
[Prototype completed] happens 2020-07-10
[Setup assembly line] requires 12 days
[Setup assembly line] starts at [Test prototype]'s end
Q@endgantt
July 2020

We Th Fr Sa SuMo TuWe Th Fr Sa SuMo Tu We Th Fr Sa Su Mo Tu We
12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22

[Test prototype |
Prototype comple ted
| Setup assembly line
Wa Th Fr Sa SuMa Tu We Th Fr Sa SuMa Tu We Th Fr Sa Su Mo Tu We
12 3 4 58 6 7 8B 91011121314 1516 17 18 19 20 21 22
July 2020

16.8.3 Jalon de fin de tAches maximum

O@startgantt

[Taskl] requires 4 days

then [Taskl.1] requires 4 days

[Taskl1.2] starts at [Taskl]'s end and requires 7 days

[Task2] requires 5 days
then [Task2.1] requires 4 days

[MaxTaskEnd] happens at [Taskl.1]'s end
[MaxTaskEnd] happens at [Taskl1.2]'s end
[MaxTaskEnd] happens at [Task2.1]'s end

Q@endgantt

12,345,678 9101

LaxTaskEnd
1'2'3'4'5'6' 7T 8B 9101

[Réf. QA-10764]

16.9 Hyperliens
Vous pouvez ajouter des hyperliens aux taches.

§

Guide de référence du langage PlantUML (1.2025.0) 359 / 580

16.10 Calendrier 16 DIAGRAMME DE GANTT

O@startgantt

[taskl] requires 10 days

[taskl] links to [[http://plantuml.com]]
Q@endgantt

1,2,3,4,5,6,7,8,9.10
[taski |
12 3 4 5 6 7T 8 910

16.10 Calendrier

Vous pouvez spécifier une date de début pour l’ensemble du projet. Par défaut, la premiere tache
commence a cette date

O@startgantt
Project starts the 20th of september 2017
[Prototype design] as [TASK1] requires 13 days
[TASK1] is colored in Lavender/LightBlue
Q@endgantt
September 2017 Oct

We Th Fr Sa SuMo TuWe Th Fr Sa SuMao
2021222324 25 26 27T 282930 1 2

Prototype design

Wa Th Fr Sa SuMa Tu Wa Th Fr Sa SuMa

20 21 22 23 24 25 26 2T 2B 29 30 1 2
September 2017 Oct

16.11 Journées en couleur
Il est possible d’ajouter des couleurs a certaines journées

O@startgantt
Project starts the 2020/09/01

2020/09/07 is colored in salmon
2020/09/13 to 2020/09/16 are colored in lightblue

[Prototype design] as [TASK1] requires 22 days
[TASK1] is colored in Lavender/LightBlue
[Prototype completed] happens at [TASK1]'s end
Q@endgantt

September 2020
TuWa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa SuMa Tu
12 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22

Prototype design

L Prototype completed
Tu We Th Fr Sa SulMo Tu We Th Fr Sa SulMo Tu We Th Fr Sa SulMo Tu
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22
September 2020

16.12 Changement d’échelle
Vous pouvez changer d’échelle pour les projets de trés longue durée, avec 'un des parameétres suivants :
e printscale
o ganttscale
e projectcale
et I'une des valeurs suivantes :
o daily (par défaut)
o weekly
o monthly

§

Guide de référence du langage PlantUML (1.2025.0) 360 / 580

16.12 Changement d’échelle

16 DIAGRAMME DE GANTT

e quarterly
e yearly
(Voir QA-11272, QA-9041 et QA-10948)

16.12.1 Daily (par défaut)

O@startgantt
saturday are closed
sunday are closed

Project starts the 1st of january 2021

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

January 2021 February 2021
Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr TuWa Th Fr Mo Tu We Th Fr Ma Tu
1 4 5 & 7 & 1112 13 14 15 18 18 20 21 22 25 28 2T 28 29 12 3 4 4 8 9 101112 15 16
End's committee
Prototype design end
b [Tosting L L
Fr Ma Tu We Th Fr Ma Tu We Th Fr Ma Tu We Th Fr Ma Tu We Th Fr Ma Tu We Th Fr Ma Tu We Th Fr Ma Tu
1 456748 1112 13 14 15 18 19 20 21 22 25 26 27 28 28 12345 8 9 101112 15 18
January 2021 February 2021

16.12.2 Hebdomadaire
O@startgantt
printscale weekly
saturday are closed
sunday are closed
Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]
2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

Jan 2021 Feb 2021

1 [z (3 [4 |5 [& |7
End's committee
Prototype design end
Testng]

Jan 2021 Feb 2021
@startgantt
printscale weekly
Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days
[TASK1]->[Testing]

&
Guide de référence du langage PlantUML (1.2025.0) 361 / 580

16.12 Changement d’échelle 16 DIAGRAMME DE GANTT

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
Sep Oct 2020 MNov 2020 Dec 2020 Jan 2021 Feb 2021

g |40 41 42 43 44 |45 |48 (4T 4B 48 50 51 52 53 1 2 3 4 5 [T
End's committee

Prototype design
b [Testing]
Sep Oct 2020 MNowv 2020 Dec 2020 Jan 2021 Feb 2021

16.12.3 Mensuel

O@startgantt

projectscale monthly

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committeel
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
2020 2021
SapOct | Mov | Dec | Jan Feb
End's committee
Prototype design

lil:l Testing
SapOct | Mov | Dec | Jan Fab
2020 2021

16.12.4 Trimestriel

O@startgantt

projectscale quarterly

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committeel
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
2020 2021
g3c4 |al
Prototype design
DTcsting
o304 a1
2020 2021

O@startgantt

projectscale quarterly

Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0) 362 / 580

16.13 Zoom (exemple pour toute I’échelle) 16 DIAGRAMME DE GANTT

2020 2021 2022 2023
Q4 a1 Q2 Q3 Q4 a1 Q2 Q3 Q4 a1
Prototype design
"[Tesing |
Q4 [01 [0z | a3 [a4 [Q1 [@z | a3 | a4 | Q1
2020 2021 2022 2023
16.12.5 Annuel
@startgantt
projectscale yearly
Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days
[TASK1]->[Testing]
2021-01-18 to 2021-03-22 are colored in salmon
Q@endgantt
2021 2022
Prototype design
s [Testing |
2021 2022
16.13 Zoom (exemple pour toute ’échelle)
Vous pouvez modifier le zoom, avec le parametre
e zoom <integer>
16.13.1 Zoom sur P’échelle hebdomadaire
16.13.2 Sans zoom
O@startgantt
printscale daily
saturday are closed
sunday are closed
Project starts the 1st of january 2021
[Prototype design end] as [TASK1] requires 8 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 3 days
[TASK1]->[Testing]
2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
January 2021
Fr Mo Tu'We Th Fr Mo Tu'We Th Fr Mo Tu'We Th Fr
1 4 5678 1112 13 14 15 18 19 20 21 22
End's committee
Prototype design end
B[Jresing
Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr
1 4 5 & 7 & 1112 13 14 15 18 18 20 21 22
January 2021

16.13.3 Avec zoom

O@startgantt
printscale daily zoom 2
saturday are closed

§

Guide de référence du langage PlantUML (1.2025.0)

363 / 530

16.13 Zoom (exemple pour toute I’échelle)

16 DIAGRAMME DE GANTT

sunday are closed

Project starts the 1st of january 2021

[Prototype design end] as [TASK1] requires 8 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 3 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

January 2021
Fr Ma Tu We Th Fr Ma Tu We Th Fr
1 4 5 (] 7 B 11 12 13 14 15
Prototype design end
W[Tesing]
Fr Ma Tu We Th Fr Ma Tu We Th Fr
1 4 5 [} T & 1 12 13 14 15
January 2021

[Ref. QA-13725]

16.13.4 Zoom sur ’échelle hebdomadaire
16.13.5 Sans zoom

O@startgantt
printscale weekly
saturday are closed
sunday are closed

Project starts the 1st of january 2021

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committeel
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

Jan 2021 Feb 2021

1 2 3 4 5 [} 3
End's committee

Prototype design end

Jan 2021 Feb 2021

16.13.6 Avec zoom

O@startgantt

printscale weekly zoom 4
saturday are closed
sunday are closed

Project starts the 1st of january 2021

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]

§

Guide de référence du langage PlantUML (1.2025.0)

Ma Tu Wa Th Fr
18 149 20 21 22

End's committee

Ma Tu We Th Fr
18 18 20 21 22

364 / 530

16.13 Zoom (exemple pour toute I’échelle) 16 DIAGRAMME DE GANTT

2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

Jan 2021 Feb 2021
1 2 3 4 5 6 7
End's committee

Prototype design end

Jan 2021 Feb 2021

16.13.7 Zoom sur I’échelle mensuelle
16.13.8 Sans zoom

Ostartgantt

projectscale monthly

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committeel
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

2020 2021

SapOct | Mov | Dec | Jan Feb
End's committee

Prototype design

lil:l Testing
SapOct | Mov | Dec | Jan Fab
2020 2021

16.13.9 Avec zoom

O@startgantt

projectscale monthly zoom 3

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
2020 201
Sap Octobar Navambear Decamber January Fabruary
End's committee
Prototype design

LP Testing
Sap Cctabar Naowambar Dacambar January Fabruary
2020 2021

16.13.10 Zoom sur 1’échelle trimestrielle
16.13.11 Sans zoom

@startgantt

projectscale quarterly

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue

§

Guide de référence du langage PlantUML (1.2025.0) 365 / 580

16.13 Zoom (exemple pour toute I’échelle) 16 DIAGRAMME DE GANTT

[Testing] requires 20 days
[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
2020 2021
azas a1
Prototype design
L}D Tasting
gaaqs a1
2020 2021

16.13.12 Avec zoom

O@startgantt

projectscale quarterly zoom 7

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon

Q@endgantt
2020 2021
Q3 Q4 [+l
Prototype design
I-) Testing
Q3 Q4 o
2020 2021

16.13.13 Zoom sur I’échelle annuelle
16.13.14 Sans zoom

O@startgantt

projectscale yearly

Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon

Q@endgantt
2021 2022
Prototype design
b [Testing]
2021 2022

16.13.15 Avec zoom

O@startgantt

projectscale yearly zoom 2

Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

§

Guide de référence du langage PlantUML (1.2025.0) 366 / 580

16.14 Weekscale with Weeknumbers or Calendar Date

16 DIAGRAMME DE GANTT

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon

Q@endgantt
2020 2021 2022 2023
Prototype design
bTestng]
2020 2021 2022 2023

16.14 Weekscale with Weeknumbers or Calendar Date
16.14.1 With Weeknumbers (by default)

O@startgantt

printscale weekly

Project starts the 6th of July 2020

[Taskl] on {Alice} requires 2 weeks

[Task2] on {Bob:50%} requires 2 weeks

then [Task3] on {Alice:25Y} requires 3 days
Q@endgantt

Jul 2020 Aug 2020
28 (29 (30 (31 (32 (33

[]Task1 {mlice}
[] Taska {Alice:25%)
Alice

00| TN 175

Bob

350 350 350 350

Jul 2020 Aug 2020

16.14.2 With Weeknumbers (starting from 1)

Ostartgantt

printscale weekly with week numbering from 1
Project starts the 6th of July 2020

[Task1l] on {Alice} requires 2 weeks

[Task2] on {Bob:50%} requires 2 weeks

then [Task3] on {Alice:25%} requires 3 days
Q@endgantt

Jul 2020 Aug 2020

1 2 3 4) L]
[)Task1 jmice)

Task2 {Bob:50%

[] Taska Alice:25%)

Alice

T T 175
Bob

350 350 350 350

Jul 2020 Aug 2020

[Ref. GH-525]

16.14.3 With Calendar Date

@startgantt

printscale weekly with calendar date
Project starts the 6th of July 2020

[Taskl] on {Alice} requires 2 weeks

[Task2] on {Bob:50%} requires 2 weeks

then [Task3] on {Alice:25%} requires 3 days
Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0)

367 / 530

16.15 Jour non travaillé 16

DIAGRAMME DE GANTT

Jul 2020 Aug 2020
L] 13 |20 |27 |3 10
[) Task1 jAice)
[] Taska alice:25%)
MAlice
T T 175
Boh
350 350 350 350
Jul 2020 Aug 2020

[Ref. QA-11630]

16.15 Jour non travaillé
Il est possible de fermer un jour.

O@startgantt

project starts the 2018/04/09

saturday are closed

sunday are closed

2018/05/01 is closed

2018/04/17 to 2018/04/19 is closed

[Prototype design] requires 14 days

[Test prototype] requires 4 days

[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype] is colored in GreenYellow/Green
Q@endgantt

April 2018 May 2018
Mo Tu'We Th Fr Mo Fr Mo Tu'We Th Fr Mo TuWe Th Fr Ma Tu
9 101112 13 18 20 23 24 25 26 27 30012 3 4 7 8
E—
[Test protot
Mo Tu We Th Fr Mo Fr Mo Tu We Th Fr Mo TuWe Th Fr Ma Tu
9 101112 13 18 20 23 24 25 26 27 012 3 4 78
April 2018 May 2018
Il est ensuite possible d’ouvrir un jour fermé.
O@startgantt
2020-07-07 to 2020-07-17 is closed
2020-07-13 is open
Project starts the 2020-07-01
[Prototype design] requires 10 days
Then [Test prototypel] requires 10 days
Q@endgantt
July 2020
We Th Fr Sa SuMa Ma Sa SuMo TuWe Th Fr Sa SuMo Tu We Th
123456 13 18 19 20 21 22 23 24 25 26 27 28 29 30
[Prototype design .| | :::::::q
(Test pototype
Wa Th Fr 5a Su Mo Mo Sa SuMo TuWe Th Fr Sa SuMo Tu We Th
123456 13 18 19 20 21 22 23 24 25 26 27 28 29 30
July 2020

16.16 Définition d’une semaine en fonction des jours fermés

Une semaine est un synonyme du nombre de jours non fermés qu’il y a dans une semaine, comme :

O@startgantt

Language fr

Project starts 2021-03-29

[Review 01] happens at 2021-03-29

[Review 02 - 3 weeks] happens on 3 weeks after [Review 01]'s end

§

Guide de référence du langage PlantUML (1.2025.0)

368 / 580

16.17 Working days 16 DIAGRAMME DE GANTT

[Review 02 - 21 days] happens on 21 days after [Review 01]'s end
Q@endgantt
mars avril 2021

Lu MaMa Je Va Sa Di Lu MaMa Ja Va Sa Di Lu MaMa Je Va Sa Di Lu
293031 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 18

Review 01
Review 02 - 3 weeks

#® Review 02 - 21 days
Lu MaMe Je Ve Sa Di Lu MaMe Je Ve Sa Di Lu MaMe Je Ve Sa Di Lu
2830311 2 3 4 5 6 7 & 91011121314 1516 17 168 19
mars avril 2021

Ainsi, si vous spécifiez que le samedi et le dimanche sont fermés, une semaine équivaudra a 5 jours,
comme :

O@startgantt

Language fr

Project starts 2021-03-29

saturday are closed

sunday are closed

[Review 01] happens at 2021-03-29

[Review 02 - 3 weeks] happens on 3 weeks after [Review 01]'s end
[Review 02 - 21 days] happens on 21 days after [Review 01]'s end

Q@endgantt

mars avril 2021
Lu Ma Ma Ja Va Lu Ma Ma Ja Va Lu Ma Ma Ja Va Lu
293031 1 2 5 & 7T B 48 12 13 14 15 16 19
* Review 01

Review 02 - 3 weeks
Review 02 - 21 days

Lu Ma Me Ja Ve Lu Ma Me Ja Ve Lu Ma Me Ja Ve Lu
2803031 1 2 5 68 7T B § 12 13 14 15 16 19

mars avril 2021

[Réf. QA-13434]

16.17 Working days

It is possible to manage working days.
O@startgantt

saturday are closed

sunday are closed
2022-07-04 to 2022-07-15 is closed

Project starts 2022-06-27
[taskl] starts at 2022-06-27 and requires 1 week
[task2] starts 2 working days after [taskl]'s end and requires 3 days

Q@endgantt
June 2022 July 2022
Ma Tu We Th Fr Ma Tu We Th Fr
27 28 29 30 1 1819 20 21 22
#[task?
Ma Tu Wa Th Fr Ma Tu Wa Th Fr
27 28 29 30 1 1819 20 21 22
June 2022 July 2022

[Ref. QA-16188]

16.18 Succession de taches simplifiée

Il est possible d’utiliser le mot-clé then pour désigner des taches consécutives.

§

Guide de référence du langage PlantUML (1.2025.0) 369 / 580

16.19 Travailler avec des ressources 16 DIAGRAMME DE GANTT

O@startgantt

[Prototype design] requires 14 days
then [Test prototypel] requires 4 days
then [Deploy prototype] requires 6 days
Q@endgantt

1,/2,3,4,5,/6,7,8,9 1011121314 1516/17 1818 ,20 21,22 23 24
[Prototype design |

Lr:’m« prototype
1'2'3'4'5'6 7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24

Vous pouvez également utiliser la fleche ->

O@startgantt

[Prototype design] requires 14 days
[Build prototype] requires 4 days
[Prepare test] requires 6 days
[Prototype design] -> [Build prototype]
[Prototype design] -> [Prepare test]
Q@endgantt

12,3 ,4,5/6,7,8,9,101112/1314/15/16 /17,18 /19,20
[Prototype design]
tl:l Build prototype

12 3 4 5 6 7T 8B 8101112131415 1617181920

16.19 Travailler avec des ressources

Vous pouvez affecter des taches a des ressources en utilisant le mot-clé on et des parenthéses pour le nom
de la ressource.

Ostartgantt

[Taskl] on {Alice} requires 10 days

[Task2] on {Bob:50%} requires 2 days

then [Task3] on {Alice:25Y} requires 1 days
Q@endgantt

1,2,3,4,5,6,7,8,9,10
[Taski [Alice} |
Task? {Bob:50%)

Task3 [Alice:25%)
[Alice

Bob

I
12 3 4 5 6 7T B 810

Plusieurs ressources peuvent étre affectées a une tache :

O@startgantt
[Taskl] on {Alice} {Bob} requires 20 days
Q@endgantt

1,2,3,4,5,6,7,8,9.10
[Task1 [Alice} {Bob} |
Alice

Bob

12 3 4 5 6 7 8 910

Les ressources peuvent étre marquées comme étant hors service certains jours :
O@startgantt
project starts on 2020-06-19

§

Guide de référence du langage PlantUML (1.2025.0) 370 / 580

16.20 Hide resources 16 DIAGRAMME DE GANTT

[Taskl] on {Alice} requires 10 days
{Alice} is off on 2020-06-24 to 2020-06-26

Q@endgantt

June 2020 Jul
Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We
19 20 21 22 23 24 25 26 27 28 29 30 1

[Task1 {Alice} |
Alice

Fr Sa SuMa Tu Wa Th Fr 5a Su Mo Tu We
19 20 21 22 23 24 25 26 27 28 29 30 1
June 2020 Jul

16.20 Hide resources
16.20.1 Without any hiding (by default)

O@startgantt

[Task1] on {Alice} requires 10 days

[Task2] on {Bob:50%} requires 2 days

then [Task3] on {Alice:25%} requires 1 days

then [Task4] on {Alice:25J} {Bob} requires 1 days

@endgantt
1,234,567 ,8,9710
[Task1 {Alice} |

QTaskz {Bob:50%}
Task3 {Alice:25%)

[Tasks {Alice:25%) {Bob)

Alice _
Bob

_—.:

12 3 4 5 6 7 8 910

16.20.2 Hide resources names

You can hide resources names and percentage, on tasks, using the hide resources names keywords.

O@startgantt

hide resources names

[Taskl] on {Alice} requires 10 days

[Task2] on {Bob:50%} requires 2 days

then [Task3] on {Alice:25%} requires 1 days

then [Task4] on {Alice:25%} {Bob} requires 1 days

Q@endgantt
1,234 5678910
[Task1 |
[JTasks
Alice _
Bob

_—.:

12 3 4 5 6 7 8 810

16.20.3 Hide resources footbox
You can also hide resources names on bottom of the diagram using the hide resources footbox

keywords.

@startgantt
hide resources footbox
[Taskl] on {Alice} requires 10 days

§

Guide de référence du langage PlantUML (1.2025.0) 371 / 580

16.21 Séparateur horizontal 16 DIAGRAMME DE GANTT

[Task2] on {Bob:50%} requires 2 days

then [Task3] on {Alice:25J} requires 1 days

then [Task4] on {Alice:25J} {Bobl} requires 1 days
Q@endgantt

1,2,3,4,5,6,7,8,9,10
[Task1 [Alice] |

qnmkz {Bob:50%}
Task3 [Alice:25%)

[Task4 {Alice:25%} [Bob)
12 3 4 5 6 7T 8B 910

16.20.4 Hide the both (resources names and resources footbox)
You can also hide the both.

O@startgantt

hide resources names

hide resources footbox

[Taskl] on {Alice} requires 10 days

[Task2] on {Bob:50%} requires 2 days

then [Task3] on {Alice:25J} requires 1 days

then [Task4] on {Alice:25J} {Bobl} requires 1 days
Q@endgantt

1,2,3,4,5,6,7,8,9,10
[Taski |

[JTasks

12 3 4 5 6 7T 8B 810

16.21 Séparateur horizontal
Vous pouvez utiliser -— pour séparer des ensembles de taches.

O@startgantt

[Taskl] requires 10 days
then [Task2] requires 4 days
-- Phase Two --

then [Task3] requires 5 days
then [Task4] requires 6 days

Q@endgantt
12,34 567 8910111213 141516 17 181920 21 22 23 24 25
[Taskl |
LP Task2
— Phase Two

HTasks |

12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25

16.22 Vertical Separator
You can add Vertical Separators with the syntax: Separator just [at].

O@startgantt
[taskl] requires 1 week
[task2] starts 20 days after [taskl]'s end and requires 3 days

Separator just at [taskl]'s end
Separator just 2 days after [taskl]'s end

§

Guide de référence du langage PlantUML (1.2025.0)

372 / 580

16.23 Exemple complexe 16 DIAGRAMME DE GANTT

Separator just at [task2]'s start
Separator just 2 days before [task2]'s start

Q@endgantt
1,23 4567 89 10/111213 14 15 1617 |18 19 20 21 22 23 24 25 26 27 2829 30
taski
? ?

12 3 4 5 6 7T 8 91011121314 1518 17 1819 20 21 22 23 24 25 26 27 28 289 30

[Ref. QA-16247]

16.23 Exemple complexe
Il est également possible d’utiliser la conjonction and.
Vous pouvez également ajouter des délais dans les contraintes.

O@startgantt

[Prototype design] requires 13 days and is colored in Lavender/LightBlue

[Test prototype] requires 9 days and is colored in Coral/Green and starts 3 days after [Prototype de
[Write tests] requires 5 days and ends at [Prototype design]'s end

[Hire tests writers] requires 6 days and ends at [Write tests]'s start

[Init and write tests report] is colored in Coral/Green

[Init and write tests report] starts 1 day before [Test prototypel's start and ends at [Test prototy
Q@endgantt

1,23 ,4,/5,6,7,8,9,10)11,12/13,14 151617181920 ,21 222324 125

Prototype design
Test prototype

[Init and write tests report |
1 2 3 4 5 68 7 B 9 1011121314 1516 17 18 1920 21 22 23 24 25

16.24 Comments

As is mentioned on Common Commands page: blockquote Everything that starts with simple quote
' is a comment.

You can also put comments on several lines using /' to start and '/ to end. blockquote (i.e.: the first
character (except space character) of a comment line must be a simple quote ')

O@startgantt
' This is a comment

[T1] requires 3 days

/' this comment
is on several lines '/

[T2] starts at [T1]'s end and requires 1 day
Q@endgantt

12,34

|:| T2

12 3 4

16.25 Avec style
16.25.1 Sans style (par défaut)

O@startgantt
[Taskl] requires 20 days
note bottom

§

Guide de référence du langage PlantUML (1.2025.0) 373 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

memol
memo2 ...
explanationsl
explanations2 ...
end note
[Task2] requires 4 days
[Taskl] -> [Task2]
-- Separator title —-
[M1] happens on 5 days after [Taskl]'s end

-- end —-
Q@endgantt
1,234 56,7 B 81011121314 1516 17 18 19,20 21 22 23 24 25
[Task]
memos [Taskz |
mema ..
explanatonsi ...
explanabons?
— Separator title
111
~ end

12 3 4 5 6 7T 8B 81011121314 1516 17 18 1920 21 22 23 24 25

16.25.2 Avec style
Vous pouvez utiliser le style pour modifier le rendu des éléments.

O@startgantt

<style>
ganttDiagram {

task {

FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue

}

milestone {
FontColor blue
FontSize 25
FontStyle italic
BackGroundColor yellow
LineColor red

}

note {

FontColor DarkGreen
FontSize 10
LineColor OrangeRed
}

arrow {

FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue

}

separator {
LineColor red

§

Guide de référence du langage PlantUML (1.2025.0) 374 / 580

16.25 Avec style 16 DIAGRAMME DE GANTT

BackGroundColor green
FontSize 16
FontStyle bold
FontColor purple
b
}
</style>
[Taskl] requires 20 days
note bottom
memo1l
memo2 ...
explanationsl ...
explanations2 ...
end note
[Task2] requires 4 days
[Taskl] -> [Task2]
—-- Separator title —-
[M1] happens on 5 days after [Taskl]'s end
-- end —-
Q@endgantt

1,2,3,4,5,/6,7,8,91M0111213141516/17 1818 ,20 21,22 23 24 25
|Task1 |
memot .. 1) W[Task2

mamo2 ...
axplanations? ...
axplanations2 ...

Separatortitle
OM1
e

12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25

[Ref. QA-10835, QA-12045, QA-11877 et PR-438]

16.25.3 Avec style (exemple complet)

O@startgantt

<style>
ganttDiagram {

task {

FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue

}

milestone {
FontColor blue
FontSize 25
FontStyle italic
BackGroundColor yellow
LineColor red

}

note {

FontColor DarkGreen
FontSize 10
LineColor OrangeRed

§

Guide de référence du langage PlantUML (1.2025.0)

375 / 580

16.25 Avec style

16 DIAGRAMME DE GANTT

}
arrow {
FontName Helvetica
FontColor red
FontSize 18
FontStyle bold
BackGroundColor GreenYellow
LineColor blue
LineStyle 8.0;13.0
LineThickness 3.0
}
separator {
BackgroundColor lightGreen
LineStyle 8.0;3.0
LineColor red
LineThickness 1.0
FontSize 16
FontStyle bold
FontColor purple
Margin 5
Padding 20
}
timeline {

BackgroundColor Bisque
}
closed {
BackgroundColor pink
FontColor red
}
}
</style>
Project starts the 2020-12-01

[Taskl] requires 10 days
sunday are closed

note bottom
memol
memo2 ...
explanationsl ...
explanations2 ...
end note

[Task2] requires 20 days

[Task2] starts 10 days after [Taskl]'s end
-- Separator title —-

[M1] happens on 5 days after [Taskl]'s end

<style>

separator {
LineColor black

Margin O

Padding O

}

</style>

-- end --
Q@endgantt

«
&« Guide de référence du langage PlantUML (1.2025.0)

376 / 530

16.25 Avec style 16 DIAGRAMME DE GANTT

December 2020 January 2021

TuWe Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMa Tu We Th Fr 5a SuMa Tu We

1 2 3 4 5 6 7T 8 91011121314 151617 1819202122 2324252627 28293031 1 2 3 4 5 6 7 8 9 101

|Task1

11213

memal ... L LI W +|Task2

mamo2 ...
axplanations? ...
explanations2 ...

— Separator title

OM1

end

TuWe Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMa Tu We Th Fr 5a SuMa Tu We

12 34 5 6 7 8 91011121314 151617 181820212223 24252627 282930311 2 3 4 5 6 7 8 9 101
December 2020 January 2021

[Réf. QA-13570, QA-15672]

11213

TODO: FAIT Merci pour le style pour le Séparateur et tous les styles pour la Fléche (épaisseur...)

16.25.4 Nettoyer le style

Avec le style, vous pouvez également nettoyer un diagramme de Gantt (montrant uniquement les tdches,
les dépendances et les durées relatives - mais pas de date de début réelle et pas d’échelle réelle):

O@startgantt
<style>
ganttDiagram {
timeline {
LineColor transparent
FontColor transparent
}
X
</style>

hide footbox

[Test prototype] requires 7 days

[Prototype completed] happens at [Test prototypel's end
[Setup assembly line] requires 9 days

[Setup assembly line] starts at [Test prototypel]'s end
then [Setup] requires 5 days

[T2] requires 2 days and starts at [Test prototypel's end
then [T3] requires 3 days

-- end task -—-

then [T4] requires 2 days

Q@endgantt

Prototype completed
|Setup assambly line |
bSewp]
(3]

— end task

[Réf. QA-13971]
Ou:
O@startgantt

§

Guide de référence du langage PlantUML (1.2025.0)

377 / 580

16.26 Ajouter des notes 16 DIAGRAMME DE GANTT

<style>
ganttDiagram {
timeline {
LineColor transparent
FontColor transparent
}
closed {
FontColor transparent
3
by
</style>

hide footbox

project starts the 2018/04/09

saturday are closed

sunday are closed

2018/05/01 is closed

2018/04/17 to 2018/04/19 is closed

[Prototype design] requires 9 days

[Test prototype] requires 5 days

[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Fuchsia/FireBrick
[Test prototype] is colored in GreenYellow/Green
Q@endgantt

[Réf. QA-13464]

16.26 Ajouter des notes

O@startgantt
[task01] requires 15 days
note bottom
memol
memo2 ...
explanationsl ...
explanations2 ...
end note

[task01] -> [task02]

Q@endgantt
1,23 ,4,5,6,7,8,91011121314/1516
[taskD1 |
memaod ... LPI:l task02
memo2 .

explanabong 1 ...
explanatons? ..

17273Ta 576 7 8 9 10'11112'13'14 15 18
Exemple avec chevauchement

O@startgantt
[task01] requires 15 days
note bottom

memo1l

memo2 ...

§

Guide de référence du langage PlantUML (1.2025.0) 378 / 580

16.26 Ajouter des notes 16 DIAGRAMME DE GANTT

explanationsl
explanations2 ...
end note

[task01] -> [task02]
[task03] requires 5 days

Q@endgantt

1,2,3,4,5,86,7 8,9 1011121314 /1516
[taskoi

memol ..
memoZ ...
explanatonsi ...
explanabons?

|
[Jtaskoz

12 3 4 5 6 7 8B 81011121314 1516

O@startgantt
-- testO01l --

[task01] requires 4 days
note bottom

'note left

memol

memo2 ...

explanationsl
explanations?2

end note

[task02] requires 8 days
[task01] -> [task02]
note bottom

'note left

memol

memo2 ...

explanationsl
explanations?2

end note

-- test02 --

[task03] as [t3] requires 7 days
[t3] -> [t4]
Q@endgantt

1,23 4,5 6,7 8,91011)12

~ testd1
taski
memoi ... h
memaz ...
explanatonad ..
explanalons?

Ly[taskoz
memel ..
mema ..
explanatons i ..
explanatons ...

~ testd2

[s

12 3 4 5 6 7 8 9101112

§

Guide de référence du langage PlantUML (1.2025.0) 379 / 580

16.27 Pause des taches 16 DIAGRAMME DE GANTT

TODO: FAIT Merci pour la correction (de #386 sur la v1.2020.18) lors d’un chevauchement

O@startgantt
Project starts 2020-09-01

[taskA] starts 2020-09-01 and requires 3 days
[taskB] starts 2020-09-10 and requires 3 days
[taskB] displays on same row as [taskA]

[taskO1] starts 2020-09-05 and requires 4 days

then [task02] requires 8 days
note bottom

note for task02

more notes
end note

then [task03] requires 7 days
note bottom

note for task03

more notes
end note

-— separator --

[taskC] starts 2020-09-02 and requires 5 days
[taskD] starts 2020-09-09 and requires 5 days
[taskD] displays on same row as [taskC]

[task 10] starts 2020-09-05 and requires 5 days
then [task 11] requires 5 days
note bottom

note for taskll

more notes
end note
Q@endgantt

September 2020

Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su Mo Tu We
1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23

[task02 |
nmem@,‘mi Blaswz]
more notes

node for taskid

Mo nales
I SGDEI.FEI.IDI’
[taskC | [taskD
task 10
task 11
note for task 11
Mo nales

Tu Wa Th Fr 5a SuMo Tu We Th Fr Sa SuMo Tu Wa Th Fr Sa SuMa Tu Wa
12 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23
September 2020

16.27 Pause des taches

O@startgantt
Project starts the 5th of december 2018
saturday are closed

§

Guide de référence du langage PlantUML (1.2025.0) 380 / 580

16.28 Modifier les couleurs des liens 16 DIAGRAMME DE GANTT

sunday are closed

2018/12/29 is opened

[Prototype design] requires 17 days

[Prototype design] pauses on 2018/12/13

[Prototype design] pauses on 2018/12/14

[Prototype design] pauses on monday

[Test prototype] starts at [Prototype design]'s end and requires 2 weeks
Q@endgantt

December 2018 January 2019
Wa Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu Wa Th Fr Sa SuMao Tu We Th Fr Mo Tu Wa Th Fr Mo Tu Wa Th
5 6 T 10 11 12 13 14 17 18 19 20 21 24 25 26 27 2829 3031 1 2 3 4 7 8 491011 14 15 16 17
[Prototypedesign [[[~ |

[Tesipotope

We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Sa Mo Tu We Th Fr Mo Tu We Th Fr Ma Tu We Th
5 6 T 10 11 12 13 14 17 18 18 20 21 24 25 26 27 28 29 11 2 3 4 T8 9101 14 15 16 17

December 2018 January 2019

16.28 Modifier les couleurs des liens
Vous pouvez modifier les couleurs des liens :
e avec cette syntaxe :* with <color> <style> link

O@startgantt

[T1] requires 4 days

[T2] requires 4 days and starts 3 days after [T1]'s end with blue dotted link
[T3] requires 4 days and starts 3 days after [T2]'s end with green bold link
[T4] requires 4 days and starts 3 days after [T3]'s end with green dashed link
Q@endgantt

1,23 4,5 6,789 1011121314 1518 171819 2021 22 |23 24 25

]

(L H

1'2'3'4'5'6'7 8 9101111121314 /151617 1181920 '21 22 2324 25
e ou directement en utilisant le style fleche

O@startgantt

<style>

ganttDiagram {

arrow {

LineColor blue

¥

}

</style>

[Prototype design] requires 7 days

[Build prototype] requires 4 days

[Prepare test] requires 6 days

[Prototype design] -[#FFOOFF]-> [Build prototype]
[Prototype design] -[dotted]-> [Prepare test]
Then [Run test] requires 4 days

Q@endgantt

1,/2,3,4,5,/6,7, 8,9 1011121314 151617
[Prototype design |
B[]Build prototype
‘$[Prepare test |

12 3 4 5 6 7 8 91011121314 1518 17

[Réf. QA-13693]

§

Guide de référence du langage PlantUML (1.2025.0) 381 / 580

16.29 Taches ou jalons sur la méme ligne 16 DIAGRAMME DE GANTT

16.29 Taches ou jalons sur la méme ligne
Vous pouvez placer des taches ou des jalons sur la méme ligne, avec cette syntaxe :
e [T|M] displays on same row as [T|M]

O@startgantt

[Prototype design] requires 13 days

[Test prototype]l requires 4 days and 1 week

[Test prototype] starts 1 week and 2 days after [Prototype design]'s end
[Test prototype] displays on same row as [Prototype design]

[r1] happens on 5 days after [Prototype design]'s end

[r2] happens on 5 days after [rl1]'s end

[r3] happens on 5 days after [r2]'s end

[r2] displays on same row as [ril]

[r3] displays on same row as [ri]

Q@endgantt
12,3456, 78,9 1011121314 151617 1818 20,21 22 23 24 |25 26 27 28 29,30 31,32 33
[Prototype design | ¥ Test prototype |
*r1 *2 *3

12 3 4 5 6 7 8 91011121314 1516 17 1818 20 21 22 23 24 25 26 27 28 289 30 31 32 33

16.30 Mise en avant aujourd’hui

O@startgantt

Project starts the 20th of september 2018

sunday are close

2018/09/21 to 2018/09/23 are colored in salmon

2018/09/21 to 2018/09/30 are named [Vacation in the Bahamas]

today is 30 days after start and is colored in #AAF
[Foo]l happens 40 days after start
[Dummy] requires 10 days and starts 10 days after start

Q@endgantt

September 2018 October 2018
Th Fr Sa Mo Tu We Th Fr Sa Mo Tu We Th Fr Sa Mo Tu We Th Fr Sa Mo Tu We Th Fr Sa Mo Tu We Th Fr Sa Mo Tu
20 21 22 24 25 26 27 28 29 12 3 4 5 6 8 8 10111213 15 16 17 18 19 20 22 23 24 25 26 27 29 30

Vacation in the Bahamas

®Foo

|Dumrny . |
Th Fr Sa SuMo TuWa Th Fr Sa SuMo TuWa Th Fr Sa SuMo TuWa Th Fr Sa SuMo Tu Wa Th Fr Sa SuMo Tu Wa Th Fr Sa SuMo Tu
202122 23 24 25 26 27 28 29 12 3 458 B 9 10111213 15 16 17 18 19 20 21 22 23 24 25 26 27 25 29 30

September 2018 October 2018

16.31 Tache entre deux jalons

O@startgantt
Language fr
project starts on 2020-07-01
[P_start] happens 2020-07-03
[P_end] happens 2020-07-13
[Prototype design] occurs from [P_start] to [P_end]
Q@endgantt
juillet 2020

Ma Ja Va Sa Di Lu Ma Ma Ja Va Sa Di Lu
12 3 4 5 8 7T 8 910111213

P_start
.jJE nd
[Prototype design |

Me Ja Ve Sa Di Lu MaMe Je Ve Sa Di Lu
123 4 5 6 7 8 910111213
juillet 2020

§

Guide de référence du langage PlantUML (1.2025.0) 382 / 580

16.32 Grammar and verbal form 16 DIAGRAMME DE GANTT

16.32 Grammar and verbal form

Verbal form | Example
[T] starts
[M] happens

16.33 Ajouter un titre, un en-téte, un pied de page, une légende ou une
légende

Ostartgantt

header some header

footer some footer

title My title

[Prototype design] requires 13 days
legend

The legend

end legend

caption This is caption

Q@endgantt

My title

12,345 6 78,9 10111213

| Prototype design
1'2'3'4'5'6'7'8' 910111213

This is caption

(Voir aussi : Commandes communes)

16.34 Add color on legend

O@startgantt

[Kick off] requires 1 days and is colored in blue
then [Prototype design] requires 5 days

[Test prototypel requires 4 days

[Test prototype] starts at [Prototype design]'s end
[Prototype design] is colored in Green

[Test prototype]l is colored in gray

legend

Legend:

|= Color |= Task Type |
|<#gray> | Planned |

| <#Green>| In progress |
|<#blue> | Done |

end legend

Q@endgantt

«
&« Guide de référence du langage PlantUML (1.2025.0) 383 / 580

16.35 Suppression des boites de pied (exemple pour toutes les échelles)6 DIAGRAMME DE GANTT

1,23 4,56, 7,8,9/10

ﬂKick off
Prototype design

I est prototype

12 3 4 5 6 7 8 910

[Ref. QA-19021]

16.35 Suppression des boites de pied (exemple pour toutes les échelles)

Vous pouvez utiliser les mots-clés hide footbox pour supprimer les boites de pied du diagramme de
gantt (comme pour le diagramme de séquence).

Exemples sur :
o échelle quotidienne (sans début de projet)
O@startgantt

hide footbox
title Foot Box removed

[Prototype design] requires 15 days
[Test prototype]l requires 10 days
Q@endgantt

Foot Box removed

12,345 6 78,9 10111213 1415

| Prototype design
[Test prototype

e échelle journaliere

O@startgantt

Project starts the 20th of september 2017
[Prototype design] as [TASK1] requires 13 days
[TASK1] is colored in Lavender/LightBlue

hide footbox
Q@endgantt

September 2017 Oct
We Th Fr Sa SuMo TuWe Th Fr Sa SuMo
2021222324 25 26 27T 282930 1 2

Prototype design

¢ échelle hebdomadaire
O@startgantt
hide footbox

printscale weekly
saturday are closed
sunday are closed

Project starts the 1st of january 2021

§

Guide de référence du langage PlantUML (1.2025.0) 384 / 580

16.35 Suppression des boites de pied (exemple pour toutes les échelles)6

DIAGRAMME DE GANTT

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

Jan 2021 Feb 2021

1 2 i |4 5 |6 7
End's committee

Prototype design end

¢ échelle mensuelle

O@startgantt
hide footbox

projectscale monthly

Project starts the 20th of september 2020
[Prototype design] as [TASK1] requires 130 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 20 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are named [End's committee]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

2020 2021

SapOct | Mov | Dec | Jan Fab
End's committee

Prototype design

lbl:| Tasting
o ¢échelle trimestrielle

O@startgantt
hide footbox

projectscale quarterly

Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
Q@endgantt

2020 2021 2022 2023

Q4 a1 Qz Q3 Q4 a1 Qz Q3 Q4
Prototype design

a1

b Testing]

o échelle annuelle

O@startgantt

hide footbox

§

Guide de référence du langage PlantUML (1.2025.0)

385 / 580

16.36 Langue du calendrier 16 DIAGRAMME DE GANTT

projectscale yearly

Project starts the 1st of october 2020
[Prototype design] as [TASK1] requires 700 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 200 days

[TASK1]->[Testing]

2021-01-18 to 2021-03-22 are colored in salmon
Q@endgantt

2021 2022

Prototype design
b [Festing |

16.36 Langue du calendrier

Vous pouvez choisir la langue du calendrier Gantt, avec la commande language <xx> ou <xx> est le code
ISO 639 de la langue.

16.36.1 English (en, par défaut)

O@startgantt
saturday are closed
sunday are closed

Project starts 2021-01-01

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon

Q@endgantt

January 2021 February 2021
Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Ma Tu
1 4 5 & 7 & 1112 13 14 15 18 18 20 21 22 25 26 27 28 28 1 2 3 4 58 8 9 101112 15 16
Prototype design end

Qrmmmg ____________

Fr Mo Tu Wa Th Fr Mo Tu Wa Th Fr Mo Tu Wa Th Fr Mo Tu Wa Th Fr Mo Tu Wa Th Fr Mo Tu Wa Th Fr Mo Tu
1 4 5 6 7 8 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 12 3 45 8 4 101112 15 16

January 2021 February 2021

16.36.2 Allemand (de)

O@startgantt
language de
saturday are closed
sunday are closed

Project starts 2021-01-01

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0) 386 / 580

16.36 Langue du calendrier

16 DIAGRAMME DE GANTT

Januar 2021 Februar 2021
Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di
1 4 5 & 7T B 11 12 13 14 15 18 18 20 21 22 25 28 2T 28 29 1 2 3 4 & 8 9 101112 15 16
Prototypa design end
Uy [Testing - L L
Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo Di Mi Da Fr Mo D
1 4 5 67 8 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 12 3 4 5 & 9 101112 15 16
Januar 2021 Februar 2021
16.36.3 Japonais (ja)
O@startgantt
language ja
saturday are closed
sunday are closed
Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
18 2021 2H 2021
3 A Aok k& Aok k& IR A R Aok
1 4 5 & 7 & 11 12 13 14 15 18 18 20 21 22 25 28 2T 28 29 1 a4 4 A 8 9 101112 15 16
Prototypa design end
Uy [Testing - L N
i (O (O (O (O (O (O Fok
1 4 5 67 8 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 12 3 4 5 & 9 101112 15 16
18 2021 2H 2021
16.36.4 Chinois (zh)
O@startgantt
language zh
saturday are closed
sunday are closed
Project starts 2021-01-01
[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue
[Testing] requires 14 days
[TASK1]->[Testing]
2021-01-18 to 2021-01-22 are colored in salmon
Q@endgantt
—H 2021 —H 201
AT - 3 =B 7 - 80 - = T Tl 8 3 =B T - 8 3 = T Tl 8 3 =B 7 Tl B =B T S
1 4 5§ & T B 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 1 2 3 4 5 B 8 101112 15 16
Prototype design and
s [Tosting | L I
FT Tl 8080 =2) Tl 8080 =2) Fel) 180 =280) Tl 8080 =2) Tl 8080 =2) Tl 8080 =2) -
1 4 5678 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 123 4 5 B 9 101112 15 16
—H 201 —H 201

16.36.5 Coréen (ko)

O@startgantt
language ko
saturday are closed
sunday are closed

§

Guide de référence du langage PlantUML (1.2025.0)

387 / 580

16.37 Supprimer des taches ou des jalons 16 DIAGRAMME DE GANTT

Project starts 2021-01-01

[Prototype design end] as [TASK1] requires 19 days
[TASK1] is colored in Lavender/LightBlue

[Testing] requires 14 days

[TASK1]->[Testing]

2021-01-18 to 2021-01-22 are colored in salmon

Q@endgantt
12021 202021
1 4 5 6 7 8 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 12 3 45 & 9 10 11 12 15 16
Prototype design end
“rmmmg““ ____________
1 4 5 6 7 8 1112 13 14 15 18 19 20 21 22 25 26 27 28 29 12 3 45 8 4 101112 15 16
12021 202021

16.37 Supprimer des tiaches ou des jalons

Vous pouvez marquer certaines taches ou certains jalons comme deleted au lieu de normalement terminés
pour distinguer les taches qui ont pu étre éventuellement écartées, reportées ou autres

O@startgantt

[Prototype design] requires 1 weeks

then [Prototype completed] requires 4 days

[End Prototype completed] happens at [Prototype completed]'s end
then [Test prototype] requires 5 days

[End Test prototypel happens at [Test prototypel's end

[Prototype completed] is deleted
[End Prototype completed] is deleted
Q@endgantt

1,23 4,56, 7,8, 91011121314 1516
[IPrototype completed

End Prototype completed

[ITestprototype

#End Test prototype
12 3 4 5 6 7 8 91011121314 1516

[Réf. QA-9129]

16.38 Start a project, a task or a milestone a number of days before or after
today

You can start a project, a task or a milestone a number of days before or after today, using the builtin
functions %now and %date:

O@startgantt

title Today is %date("YYYY-MM-dd")

I$now = %now()

I$past = Ydate("YYYY-MM-dd", $now - 14%24*3600)

Project starts $past

today is colored in pink

[foo] requires 10 days

[bar] requires 5 days and starts %date("YYYY-MM-dd", $now + 4%24%3600)

[Tomorrow] happens %date("YYYY-MM-dd", $now + 1%24%*3600)
Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0) 388 / 580

16.39 Change Label position

16 DIAGRAMME DE GANTT

Today is 2025-02-02

January 2025

February 2025

SuMo TuWe Th Fr Sa SulMo Tu We Th Fr Sa SulMo Tu We Th Fr Sa Sulo
1920212223 242526 2T 282830311 2 3 4 65§ 6 7 8 910

[foo |

SuMo TuWe Th Fr Sa SulMo Tu We Th Fr Sa SulMo Tu We Th Fr Sa Sulo
1920212223 242526 2T 282830311 2 3 4 5 6 7 &8 9 10

January 2025

[Ref. QA-16285]

16.39 Change Label position
16.39.1 The labels are near elements (by default)

Ostartgantt
[Taskl] requires 1 days

then [Task2_long_long_long] as [T2] requires 2 days

-- Phase Two --

then [Task3] as [T3] requires 2 days
[Task4] as [T4] requires 1 day
[Task5] as [T5] requires 2 days

[T2] -> [T4]

[T2] -> [T5]

[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]

[T5] -> [T6]

[End] happens 1 day after [T6]'s end
Q@endgantt

1,23 4,56, 7,8,/9/10

%Tasld
Task2 long_leng_long

— Phasd Twao
Task3
[Tiasks
Task5

[| Taské_long_long_long

®End

12 3 4 5 6 7 8 910

To change the label position, you can use the command label:

16.39.2 Label on first column
o Left aligned

O@startgantt
Label on first column and left aligned
[Taskl] requires 1 days

then [Task2_long_long_long] as [T2] requires 2 days

-- Phase Two --

then [Task3] as [T3] requires 2 days

[Task4] as [T4] requires 1 day

[Task5] as [T5] requires 2 days

[T2] -> [T4]

[T2] -> [T5]

[Task6_long_long_long] as [T6] requires 4 days
[T3] -> [T6]

[T5] -> [T6]

[End] happens 1 day after [T6]'s end

§

Guide de référence du langage PlantUML (1.2025.0)

February 2025

389 / 580

16.39 Change Label position 16

DIAGRAMME DE GANTT

Q@endgantt

1,23, 4,5, 6, 7 8,810

Task1 %
Task2_long_leng_long

— Bhasg Two
Task3
Task4]
Task5
Task6 long long long 1
End +*

12 3 4 5 & 7 8B 810
o Right aligned

O@startgantt

Label on first column and right aligned

[Taskl] requires 1 days

then [Task2_long_long_long] as [T2] requires 2 days
—-- Phase Two --

then [Task3] as [T3] requires 2 days

[Task4] as [T4] requires 1 day

[Task5] as [T5] requires 2 days

[T2] -> [T4]

[T2] -> [T5]

[Task6_long_long long] as [T6] requires 4 days
[T3] -> [T6]

[T5] -> [T6]

[End] happens 1 day after [T6]'s end

Q@endgantt

1,23, 4,5 6,7, 8,910

Task1 %
Task2_long_long_long

= Phasg Two ————————
Task3d
Task4]
Task5
Taské_long_leng_long |:|
End *

12 3 4 5 6 7 8 810

16.39.3 Label on last column
o Left aligned

O@startgantt

Label on last column and left aligned

[Taskl] requires 1 days

then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --

then [Task3] as [T3] requires 2 days

[Task4] as [T4] requires 1 day

[Task5] as [T5] requires 2 days

[T2] -> [T4]

[T2] -> [T5]

[Task6_long_long_long] as [T6] requires 4 days
(T3] -> [T6]

[T5] -> [T6]

[End] happens 1 day after [T6]'s end

Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0)

390 / 580

16.39 Change Label position 16

DIAGRAMME DE GANTT

1,23 4,5 6,788,910

% Task1
Task2_long_leng_long

— Phasdq Twao

Task3
] Task4
Task5

[1 |Taské_long_long_long
Eng

12 3 4 5 6 7 8 910
o Right aligned

O@startgantt

Label on last column and right aligned

[Taskl] requires 1 days

then [Task2_long_long_long] as [T2] requires 2 days
-- Phase Two --

then [Task3] as [T3] requires 2 days

[Task4] as [T4] requires 1 day

[Task5] as [T5] requires 2 days

[T2] -> [T4]
[T2] -> [T5]
[Task6_long_long long] as [T6] requires 4 days
[T3] -> [T6]
[T5] -> [T6]
[End] happens 1 day after [T6]'s end
Q@endgantt
12,34 5678910
Task1
% Task2_long_long_long
- Phasg Twg ———————
Task3
O Taskd
Tasks
|:| Taské_long_leng_long
End

12 3 4 5 6 7 8 910

[Ref. QA-12433]

§

Guide de référence du langage PlantUML (1.2025.0)

391 / 580

17 MINDMAP

17 MindMap

Un diagramme MindMap, dans le contexte de PlantUML, est un outil efficace pour le brain-
storming, l'organisation des idées et la planification de projets. Les diagrammes MindMap, ou cartes
heuristiques, sont des représentations visuelles de I'information, ou les idées centrales se ramifient en
sujets connexes, créant une toile d’araignée de concepts. PlantUML facilite la création de ces diagrammes
grace a sa syntaxe simple, basée sur le texte, qui permet d’organiser et de visualiser efficacement des
idées complexes.

L’utilisation de PlantUML pour les MindMaps est particulierement avantageuse en raison de son inté-
gration avec d’autres outils et systémes. Cette intégration rationalise le processus d’incorporation
des cartes heuristiques dans la documentation d’un projet plus vaste. L’approche textuelle de PlantUML
permet également de modifier facilement les cartes mentales et d’en contrdler la version, ce qui en fait
un outil dynamique pour le brainstorming collaboratif et le développement d’idées.

Les cartes mentales dans PlantUML peuvent étre utilisées a des fins diverses, de I'esquisse de la structure
d’un projet au brainstorming sur les caractéristiques d’'un produit ou les stratégies commerciales. La
présentation hiérarchique et intuitive des cartes mentales permet d’identifier les relations entre
différentes idées et concepts, ce qui facilite la vision d’ensemble et permet d’identifier les domaines qui
nécessitent une exploration plus approfondie. PlantUML est donc un outil précieux pour les chefs de
projet, les développeurs et les analystes commerciaux qui ont besoin d'une méthode pour organiser
visuellement et présenter des informations complexes de maniere claire et concise.

17.1 Syntaxe OrgMode
Cette syntaxe est compatible avec OrgMode

O@startmindmap

* Debian

** Ubuntu

*** Linux Mint

**x*x Kubuntu

**x*x Lubuntu

**x*x KDE Neon

** LMDE

** SolydXK

*x Steam0S

** Raspbian with a very long name
*** <s>Raspmbc</s> => 0SMC
**x* <s>Raspyfi</s> => Volumio
@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0) 392 / 580

17.2 Syntaxe Markdown

17 MINDMAP

Raspbian with a very long name

Fkﬁpyﬁ=>Vohmﬁ€]

17.2 Syntaxe Markdown

La syntaxe Markdown est supportée.

O@startmindmap

root node

some first level node
second level node

another second level node

* ¥ X ¥ *

another first level node
@endmindmap

second level node

some first level node

anothersecondlevelnod%:

anomerﬁmtmvehmdéj

17.3 Notation arithmétique [+, -]

Vous pouvez utiliser la notation suivante pour orienter votre diagramme.

@startmindmap
+ 0S8

++ Ubuntu

+++ Linux Mint
+++ Kubuntu
+++ Lubuntu
+++ KDE Neon
++ LMDE

++ SolydXK

++ Steam0S

++ Raspbian

§

Guide de référence du langage PlantUML (1.2025.0)

Resprmbe => osmc]

393 / 580

17.4 Multilignes 17 MINDMAP

-— Windows 95
-— Windows 98
-— Windows NT
--— Windows 8
-—- Windows 10
@endmindmap

Windows 95

Windows 98

Windows NT

Windows 10

17.4 Multilignes

Le contenu multiligne des boites commence avec : et finisse avec ;.

@startmindmap

* Class Templates
**:Example 1

<code>

template <typename T>
class cnameq

void f£1()<U+003B>

}

</code>

*%:Example 2

<code>

other template <typename T>
class cnamef{

</code>

@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0) 394 / 580

17.5 Multiroot Mindmap 17 MINDMAP

4)
Example 1

template <typename T>
class cname {

void £1()<U+003B>

Class Templates _ J

Example 2
cther template <typenames T=>

class cname |

|

(Penser a échapper le ;, s’il apparait en fin de ligne intermédiaire dans le contenu, par exemple par son
correspondant unicode <U+003B>)

17.5 Multiroot Mindmap
You can create multiroot mindmap, as:

O@startmindmap
* Root 1

** Foo

** Bar

* Root 2

** Lorem

** Ipsum
@endmindmap

[Ref. QH-773]

17.6 Couleurs

Il est possible de changer la couleur des noeuds.

17.6.1 Avec couleur en ligne
¢ OrgMode syntaxe mindmap

O@startmindmap

* [#0range] Colors

x [#lightgreen] Green
** [#FFBBCC] Rose

§

Guide de référence du langage PlantUML (1.2025.0) 395 / 580

17.6 Couleurs

17 MINDMAP

** [#1lightblue] Blue
@endmindmap

¢ Syntaxe de la notation arithmétique mindmap

O@startmindmap
+[#0range] Colors
++[#lightgreen] Green
++[#FFBBCC] Rose
--[#lightblue] Blue
@endmindmap

Green

e Carte heuristique de la syntaxe Markdown

O@startmindmap
* [#0range] root node
*x[#lightgreen] some first level node
* [#FFBBCC] second level node
x[#lightblue] another second level node
x[#lightgreen] another first level node
@endmindmap

second level node

some first level node

another second level node]

another first level node]

17.6.2 Avec couleur de style
e Carte mentale de syntaxe OrgMode

@startmindmap
<style>
mindmapDiagram {
.green {
BackgroundColor lightgreen
b

.rose {

§

Guide de référence du langage PlantUML (1.2025.0)

396 / 530

17.6 Couleurs 17 MINDMAP

BackgroundColor #FFBBCC
X
.your_style_name {
BackgroundColor lightblue
3
3
</style>
* Colors
**% Green <<green>>
** Rose <<rose>>
** Blue <<your_style_name>>
@endmindmap

o Cartographie de la syntaxe de la notation arithmétique

O@startmindmap
<style>
mindmapDiagram {
.green {
BackgroundColor lightgreen
}
.rose {
BackgroundColor #FFBBCC
b
.your_style_name {
BackgroundColor lightblue
}
X
</style>
+ Colors
++ Green <<green>>
++ Rose <<rose>>
—-- Blue <<your_style_name>>
@endmindmap

¢ Carte heuristique de la syntaxe Markdown

@startmindmap
<style>
mindmapDiagram {
.green {
BackgroundColor lightgreen

§

Guide de référence du langage PlantUML (1.2025.0) 397 / 580

17.7 Masquer les bordures [|

17

MINDMAP

}
.rose {
BackgroundColor #FFBBCC
}
.your_style_name {
BackgroundColor lightblue
}
}
</style>
* root node

* some first level node <<green>>

* second level node <<rose>>

* another second level node <<your_style_name>>
* another first level node <<green>>

Q@endmindmap

COﬂd|EVE|ﬂ0dE:]

some first level node
a

nother second level nodej

Kmtnode
a

noherﬁmﬂlevelnode

[Ref. GA-920]

17.7 Masquer les bordures [_]

Vous pouvez enlever les contours des boites en utilisant le caractere tiret bas (_), comme pour les

diagrammes de type WBS.

O@startmindmap

* root node

*x some first level node

*x*_ second level node
*%*_another second level node
x%x foo

**%_ bar
*x*_ foobar
** another first level node

@endmindmap

root node

@startmindmap

*_ root node

*x_ some first level node

*x*_ second level node

**x*_ another second level node
**x*x_ foo

§

Guide de référence du langage PlantUML (1.2025.0)

second level node
another second level node

some first level node

anomerﬁmtmvehmde

398 / 530

17.8 Diagramme multi-directionnel 17

MINDMAP

*%x*_ bar
*x*_ foobar
** _ another first level node

@endmindmap
second level node
another second level node
some first level nod foo
root node
bar
foobar
another first level node
@startmindmap

+ root node

++ some first level node

+++_ second level node

+++_ another second level node
+++_ foo

+++_ bar

+++_ foobar

++_ another first level node

-- some first right level node

--_ another first right level node

Q@endmindmap

second level node

) i anocther second level node
some first right level node i
root node some first level node foo

bar

ther first right level nod
anofherfirst nght level node another first level node foobar

17.8 Diagramme multi-directionnel
Il est possible d’utiliser les deux cotés du diagramme.

O@startmindmap
* count

** 100

*kk 101

*kk 102

**x 200

left side

*% A

*kk AA

*%x%x AB

**x B
Q@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

399 / 530

17.9 Change (whole) diagram orientation

17 MINDMAP

17.9 Change (whole) diagram orientation
You can change (whole) diagram orientation with:

e left to right direction (by default)

e top to bottom direction

e right to left direction

e bottom to top direction (not yet implemented/issue then use workaround)

17.9.1 Left to right direction (by default)

O@startmindmap
* 1

*% 2

*kk 4

*k% 5

*% 3

*kk 6

*kk 7
@endmindmap

17.9.2 Top to bottom direction

O@startmindmap

top to bottom direction
* 1

**x 2

*xxx 4

*kk 5

*% 3

*%% 6

kkx 7

@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

400 / 580

17.10 Exemple complet 17 MINDMAP

17.9.3 Right to left direction

@startmindmap

right to left direction
* 1

*% 2

*kx 4

*kk 5

** 3

**kk 6

K%k 7

@endmindmap

17.9.4 Bottom to top direction

@startmindmap
top to bottom direction
left side

* 1

** 2

*xx 4

**x%x 5

** 3

**xk 6

kkx 7
@endmindmap

[Ref. QH-1413]

17.10 Exemple complet

O@startmindmap
caption figure 1
title My super title

* <&flag>Debian

§

Guide de référence du langage PlantUML (1.2025.0) 401 / 580

17.11 Changement de style

17 MINDMAP

** <&globe>Ubuntu

***x Linux Mint

***x Kubuntu

*** Lubuntu

**x*x KDE Neon

** <&graph>LMDE

*% <&pulse>SolydXK

** <&people>Steam0S

** <&star>Raspbian with a very long name
**x* <s>Raspmbc</s> => 0SMC
**x* <s>Raspyfi</s> => Volumio

header
My super header
endheader

center footer My super footer
legend right

Short

legend

endlegend
@endmindmap

My super title

[*®*Debian

KDE Necon

+Solyd XK
£SteamOS

*Raspbian with a very long name

Resprmbe => osmcj

figure 1

17.11 Changement de style
17.11.1 nceud, profondeur

@startmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

Rﬁﬁwﬁ=>vmumm]

Short
legend

402 / 580

17.11 Changement de style

17 MINDMAP

<style>
mindmapDiagram {
node {

BackgroundColor lightGreen

}
:depth(1) {
BackGroundColor white
}
}
</style>
* Linux
*x Nix0S
**x Debian
x Ubuntu
%% Linux Mint
x%x Kubuntu
**x%*x Lubuntu
*x*x*x KDE Neon
@endmindmap

17.11.2 sans boite

O@startmindmap
<style>
mindmapDiagram {
node {
BackgroundColor lightGreen
}
boxless {
FontColor darkgreen
¥
X
</style>
* Linux
*x Nix0S
** Debian
*x*_ Ubuntu
**xx Linux Mint
*kkx Kubuntu
*kkx Lubuntu
**xx*x KDE Neon
@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

403 / 580

17.12 Word Wrap 17 MINDMAP

17.12 Word Wrap

Le paramétre MaximumWidth permet de contréler le retour a ligne automatique. L’unité utilisée est le
pixel

@startmindmap

<style>

node {
Padding 12
Margin 3
HorizontalAlignment center
LineColor blue
LineThickness 3.0
BackgroundColor gold
RoundCorner 40
MaximumWidth 100

}

rootNode {
LineStyle 8.0;3.0
LineColor red
BackgroundColor white
LineThickness 1.0
RoundCorner O
Shadowing 0.0

}

leafNode {
LineColor gold
RoundCorner O
Padding 3

}

arrow {
LineStyle 4
LineThickness 0.5
LineColor green

}

</style>

* Hi =)

** sometimes i have node in wich i want to write a long text
***x this results in really huge diagram

§

Guide de référence du langage PlantUML (1.2025.0) 404 / 580

17.13 Creole on Mindmap diagram 17 MINDMAP

*xx**x of course, i can explicit split with a\nnew line
*kkx but it could be cool if PlantUML was able to split long lines, maybe with an option

@endmindmap

of course, | can
explicit split
with a
new line

sometimes i

L have node in L but it could be

| wich i want to "";”V huge cool if
write a long text lagram PlantUML was
able to split
long lines,
maybe with an
option

17.13 Creole on Mindmap diagram
You can use Creole or HTML Creole on Mindmap:

@startmindmap
* Creole on Mindmap
left side
*%:==Creole
This is **bold*x*
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~
-—test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
Use image : <img:https://plantuml.com/logo3.png>
*x: HTML Creole
This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>
-- other examples -—-
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>
right side
*x:==Creole line
You can have horizontal line

Or double line

Or strong line

§

Guide de référence du langage PlantUML (1.2025.0) 405 / 580

17.13 Creole on Mindmap diagram

17 MINDMAP

Or dotted line

..My title..

Or dotted title
//and title... //
==Title==

Or double-line title
——Another title--

Or single-line title
Enjoy!;

*x:==Creole list item
*xtest list 1*x*

* Bullet list

* Second item

*x Sub item

**x* Sub sub item

* Third item

**xtest list 2%x*

Numbered list

Second item

Sub item

Another sub item
Third item

@endmindmap

«
&« Guide de référence du langage PlantUML (1.2025.0)

406 / 580

17.13 Creole on Mindmap diagram

17 MINDMAP

[Ref.

§

(' I

Creole

This is bold

This is italics

This is monospaced

This is strieker-out

This is underlined

This is wave-underined

test Unicode and icons———

This is e long

This is a «» icon

Use image :

HTML Creocle

This is bold

This is ifalics

This is monospaced
This is streked

This is underined
This is waved

This is streked

This is underined
This is waved

other examples
This is Blue

This is Orange background

This is DIg

')
Creole line
You can have horizontal line

Cr double line

Or strong line

Or dotted line

My title
Or dotted title
and title...
Title

Creole on Mindmap

. /

QA-17838]

Guide de référence du langage PlantUML (1.2025.0)

Or double-line title

——Another tite——

Or single-line title
Enjoy!

-

vy

~
Creole list item
test list 1

= Bullet list

= Second item

= Sub item

= Sub sub item
= Third item

test list 2
1. Numbered list
2. Second item
1. Sub itern
2. Another sub item
3. Third item

h. /

407 / 580

18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

18 Structure de répartition du travail (WBS)

Un diagramme de structure de répartition du travail est un outil clé de gestion de projet qui décompose
un projet en composants ou taches plus petits et plus faciles a gérer. Il s’agit essentiellement d’une
décomposition hiérarchique de 1’étendue totale du travail a effectuer par I’équipe du projet pour
atteindre les objectifs du projet et créer les produits livrables requis.

PlantUML peut étre particulierement utile pour créer des diagrammes WBS. Grace a ses dia-
grammes textuels, la création et la mise a jour d’'un WBS sont aussi simples que ’édition d’un document
texte, ce qui est particulierement utile pour gérer les changements au cours du cycle de vie d’un projet.
Cette approche permet une intégration facile avec les systémes de contrdle des versions, ce qui
garantit que toutes les modifications sont suivies et que ’historique de I’évolution de 'OTP est conservé.

En outre, la compatibilité de PlantUML avec divers autres outils renforce son utilité dans les envi-
ronnements collaboratifs. Les équipes peuvent facilement intégrer leurs diagrammes WBS dans des
systemes de documentation et de gestion de projets plus vastes. La simplicité de la syntaxe de PlantUML
permet des ajustements rapides, ce qui est crucial dans les environnements de projets dynamiques
ou la portée et les taches peuvent changer fréquemment. Par conséquent, 'utilisation de PlantUML pour
les diagrammes WBS combine la clarté d’'une décomposition visuelle avec I'agilité et le controle d’un
systéme basé sur le texte, ce qui en fait un atout précieux pour une gestion de projet efficace.

18.1 Syntaxe OrgMode

La syntaxe est compatible avec celle de OrgMode.

@startwbs

* Business Process Modelling WBS

** Launch the project

x Complete Stakeholder Research

**x Initial Implementation Plan

** Design phase

**x* Model of AsIs Processes Completed
*%xx Model of AsIs Processes Completedl
*xxx Model of AsIs Processes Completed2
**x* Measure AsIs performance metrics
**x*% Jdentify Quick Wins

** Complete innovate phase

Q@endwbs
Business Process Modelling WBS
Launch the project Design phase Complete innovate phase
Complete Stakeholder Research M Model of Asls Processes Completed
Initial Implementation Plan Model of Asls Processes Completedi

Model of Asls Processes Completed2

H Measure Asls performance metrics

Identify Quick Wins

«
&« Guide de référence du langage PlantUML (1.2025.0) 408 / 580

18.2 Changement de direction [<, >] 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

18.2 Changement de direction [<, >]
Vous pouvez changer de direction en utilisant :

o <

o >

@startwbs

* Business Process Modelling WBS

** Launch the project

*** Complete Stakeholder Research

%%k Tnitial Implementation Plan

** Design phase

**x* Model of AsIs Processes Completed
**xx< Model of AsIs Processes Completedl
*xxx> Model of AsIs Processes Completed2
***< Measure AsIs performance metrics
**x*x< Tdentify Quick Wins

Model of Asls Processes Completed

Q@endwbs
Business Process Modelling WBS
Launch the project Design phase
Complete Stakeholder Research Measure Asls performance metrics
Initial Implementation Plan Identify Quick Wins = | Model of Asls Processes Completedt

Il

Model of Asls Processes Completed2

18.3 Notation arithmétique [+, -]

Vous pouvez utiliser la notation suivante (avec des + ou des -) pour choisir le c6té du diagramme.

@startwbs

+ New Job

++ Decide on Job Requirements
+++ Identity gaps

+++ Review JDs

++++ Sign-Up for courses
++++ Volunteer

++++ Reading

++- Checklist

+++- Responsibilities

+++- Location

++ CV Upload Done

+++ CV Updated

++++ Spelling & Grammar

++++ Check dates

---- Skills

+++ Recruitment sites chosen
@endwbs

«
&« Guide de référence du langage PlantUML (1.2025.0)

409 / 580

18.4 Multi-lignes 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

MNew Job
Decide on Job Requirements CV Upload Done
Checklist Identity gaps 1 CV Updated
Responsibilities Review JDs Skills. Spelling & Grammar
Location M Sign-Up for courses Check dates
H Volunteer ‘< Recruitment sites chosen
'~ Reading

18.4 Multi-lignes
Vous pouvez utiliser : et ; pour obtenir une boite multi-lignes, comme sur MindMap.

Ostartwbs
* <&flag> Debian
** <&globe> Ubuntu

**x:Linux Mint
Open Source;

***x Kubuntu

kxk o,
@endwbs
I® Debian
& Ubuntu
| | Linux Mint

Open Source

M Kubuntu

[Réf. QA-13945]

18.5 Masquer les bordures [|

Vous pouvez enlever les contours des boites en utilisant le caractére tiret bas (_), comme pour les cartes
MindMap.

@startwbs
+ Project

§

Guide de référence du langage PlantUML (1.2025.0) 410 / 580

18.6 Colors (with inline or style color) 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

+ Part One
+ Task 1.1
- LeftTask 1.2
+ Task 1.3
+ Part Two
+ Task 2.1
+ Task 2.2
_ k 2.2.1 To the left boxless
-_ Task 2.2.2 To the Left boxless
_ k 2.2.3 To the right boxless
Q@endwbs

Project

Part One

Task 1.1

LeftTask 1.2 l Task 1.3

Part Two
Task 2.2.1 To the left boxless—] | Task 2.1
Task 2.2.2 To the Left boxless —
H Task22

—Task 2.2.3 To the right boxless
[Ref. QA-13297] [Ref. QA-13355]

18.6 Colors (with inline or style color)
It is possible to change node color:
e with inline color

@startwbs

* [#SkyBlue] this is the partner workpackage
** [#pink] this is my workpackage

** this is another workpackage

Q@endwbs

this is the partner workpackage

this is my workpackage this is another workpackage

Ostartwbs

+[#SkyBlue] this is the partner workpackage
++[#pink] this is my workpackage

++ this is another workpackage

@endwbs

§

Guide de référence du langage PlantUML (1.2025.0)

411 / 580

18.6 Colors (with inline or style color) 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

this is the partner workpackage

this is my workpackage this is another workpackage

[Ref. QA-12374, only from v1.2020.20]
o with style color

O@startwbs
<style>
wbsDiagram {
.pink {
BackgroundColor pink
b
.your_style_name {
BackgroundColor SkyBlue
X
by
</style>
* this is the partner workpackage <<your_style_name>>
** this is my workpackage <<pink>>
**:This is on multiple
lines; <<pink>>
** this is another workpackage

Q@endwbs
this is the partner workpackage
this is my workpackage This is on multiple this is another workpackage
lines

Ostartwbs
<style>
wbsDiagram {

.pink {

BackgroundColor pink
3
.your_style_name {
BackgroundColor SkyBlue
b
¥
</style>
+ this is the partner workpackage <<your_style_name>>
++ this is my workpackage <<pink>>
++:This is on multiple
lines; <<pink>>
++ this is another workpackage
Q@endwbs

«
&« Guide de référence du langage PlantUML (1.2025.0) 412 / 580

18.7 Using style

18 STY%LR?TTLRIEI)E?I{EI%AI{TYTYCUVI)LTIY{AJGAIL,(V@?%S)

this is the partner workpackage

this is my workpackage

This is on multiple

lines

18.7 Using style

It is possible to change diagram style.

@startwbs
<style>
wbsDiagram {

// all lines (meaning connector and borders, there are no other lines in WBS) are black by default
Linecolor black

arrow {

this is another workpackage

// note that connector are actually "arrow" even if they don't look like as arrow

// This is to be consistent with other UML diagrams. Not 100% sure that it's a good idea
// So now connector are green

LineColor green

}
:depth(0) {

// will target root node
BackgroundColor White
RoundCorner 10
LineColor red

// Because we are targetting depth(0) for everything, border and connector for level 0 will be

}

arrow {

:depth(2) {
// Targetting only connector between Mexico-Chihuahua and USA-Texas

LineColor blue

LineStyle 4

LineThickness .5

}
}
node {

:depth(2) {
LineStyle 2

LineThickness 2.5

}
}

boxless {

// will target boxless node with '_

FontColor darkgreen

}
}
</style>
* World
*x America
**x* Canada
**x* Mexico
*x%% Chihuahua
*kk USA
*x*x* Texas
**x*< New York

«
&« Guide de référence du langage PlantUML (1.2025.0)

413 / 580

18.8 Word Wrap 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

** Europe
*xx_ England
***_ Germany
***_ Spain
Q@endwbs

America

T

MNew York 1+ Canada

Chihuahua

— USA

Texas

18.8 Word Wrap

Using MaximumWidth setting you can control automatic word wrap. Unit used is pixel.

@startwbs

<style>

node {
Padding 12
Margin 3
HorizontalAlignment center
LineColor blue
LineThickness 3.0
BackgroundColor gold
RoundCorner 40
MaximumWidth 100

}

rootNode {
LineStyle 8.0;3.0
LineColor red
BackgroundColor white
LineThickness 1.0
RoundCorner 0O
Shadowing 0.0

}

leafNode {
LineColor gold
RoundCorner O
Padding 3

}

§

Guide de référence du langage PlantUML (1.2025.0)

Europe

England
Germany

Spain

414 / 580

18.9 Add arrows between WBS element$8 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

arrow {
LineStyle 4
LineThickness 0.5
LineColor green

}
</style>
* Hi =)

** sometimes i have node in wich i want to write a long text

% this results in really huge diagram

*x**x of course, i can explicit split with a\nnew line

*k*xx but it could be cool if PlantUML was able to split long lines, maybe with an option who specify

Q@endwbs

- ==

:_Tjil

sometimes i have
node in wich i
want to write a

lang text

this results in
really huge
diagram

of course, | can
explicit split with a
new line

but it could be

cool if PlantUML
was able to split
long lines, maybe
with an option who

specify the
maximum width of
a node

18.9 Add arrows between WBS elements

You can add arrows between WBS elements.
Using alias with as:

@startwbs
<style>
.foo {

LineColor #00FFO00;
}
</style>
* Test
** A topic
**x* "common" as cl
**x* "common2" as c2
** "Another topic" as t2
t2 -> cl1 <<foo>>
t2 ..> c2 #blue
Q@endwbs

§

Guide de référence du langage PlantUML (1.2025.0) 415 / 580

18.10 Creole on WBS diagram 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

Test
A topic Another topic
common
commonz2
Using alias in parentheses:
@startwbs
* Test
**x(b) A topic
**%(cl) common
**(t2) Another topic
t2 --> ci
b -> t2 #blue
Q@endwbs
Test
Atopic Another topic
L common

[Ref. QA-16251]

18.10 Creole on WBS diagram
You can use Creole or HTML Creole on WBS:

@startwbs
* Creole on WBS
**x:==Creole
This is **bold*x*
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~
-—test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
Use image : <img:https://plantuml.com/logo3.png>
*x: HTML Creole
This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>

«
&« Guide de référence du langage PlantUML (1.2025.0) 416 / 580

18.10 Creole on WBS diagram 18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>
-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>0Orange background</back>
This is <size:20>big</size>
**:==Creole line
You can have horizontal line

Or double line

Or strong line

Or dotted line

..My title..

Or dotted title
//and title... //
==Title==

Or double-line title
——Another title--

Or single-line title
Enjoy!;

**%:==Creole list item
*xtest list 1*x*

* Bullet list

* Second item

**x Sub item

*** Sub sub item

* Third item

xtest list 2%x

Numbered list

Second item

Sub item

Another sub item
Third item

Q@endwbs

«
&« Guide de référence du langage PlantUML (1.2025.0)

417 / 580

18.10 Creole on WBS diagram

18 STRUCTURE DE REPARTITION DU TRAVAIL (WBS)

Creole on WBS
Creole HTML Creole Creole line Creole list item
This is bold This is bold You can have horizontal line test list 1
This is italics This is italics i » Bullet list
This is monocspaced This is monospaced Or double line * Second item
This is streker-out Thlﬁ Bmﬁﬁd‘ Or strang line = Sub item
This is underlined This is underlined * Sub sub item
This is wave-underlined This is waved P ; ® Third item
S . Or dotted |
———test Unicode and icons This is streked roote :‘.nﬂ‘:rtitlc toot list 2
This is o long This is underlined , est lis .
This is a » icon This is waved g]rj‘;::d it 1. Numbered list
other examples ——— " Tite 2 SEDD”dI item
This i Blug Or double-ine title 1+ Sub ftem
g s i backgroun 2. Another sub item
((i — 4| F———Anotherite——— | 3 Third tem
i This is blg Or single-line title
Enjoy!

[
Use image :
¢

Guide de référence du langage PlantUML (1.2025.0) 418 / 580

19 MATHEMATIQUES

19 Mathématiques

Dans PlantUML, vous pouvez utiliser :
« les notations AsciiMath :

@startuml

:$int_071f (x)dx$;
:$x~2+y_1+z_12734$;

note right

Try also

$d/dxf (x)=1im_(h->0) (f (x+h) -f (x)) /h$
$P(y|bb"x") or f(bb"x")+epsilon$

end note

Q@enduml

~

‘ A flz)dz

Try also
P S
'/332 e d (z) = lim flx+h)— f(x)
‘_\ Tt A } dx h—0 h

-

P(yx) or f(x)+e

¢ les notations JLaTeXMath :

O@startuml

:<latex>\int_0"1f (x)dx</latex>;

:<latex>x"2+y_1+z_{12}"{34}</latex>;

note right

Try also

<latex>\dfrac{d}{dx}f (x)=\1lim\limits_{h \to O}\dfrac{f (x+h)-f(x)}{h}</latex>
<latex>P(y|\mathbf{x}) \mbox{ or } f(\mathbf{x})+\epsilon</latex>

end note

Q@enduml

Y

l/ AI flx)dx |

s

Try also
Y
- L)y — g SRR = S@)
‘_. TYL T 2 } dx h—0 h

A

Plylx) or f(x)+ ¢

Autre exemple :

@startuml

Bob -> Alice : Peux-tu résoudre: $ax~2+bx+c=0$
Alice --> Bob: $x = (-b+-sqrt(b~2-4ac))/(2a)$
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 419 / 580

19.1 Diagramme indépendant 19 MATHEMATIQUES

ar’ +br+c=0

Peux-tu résoudre:

b+ VP —dac ;

2a

T

-
-

|Bob| |AHDe|

19.1 Diagramme indépendant
I1 est possible d’utiliser @startmath/@endmath pour créer des formules AsciiMath.

@startmath
f(t)=(a_0)/2 + sum_(n=1) ooa_ncos((npit)/L)+sum_(n=1) oo b_n\ sin((npit)/L)

@endmath
oo oo
a nrt nit
flt)= 7” + Za,, Cos (T) + Zb,, sin (T)
- n=1 . n=1 !

Ou bien utiliser @startlatex/@endlatex pour créer des formules JLaTeXMath.

@startlatex
\sum_{i=0}"{n-1} (a_i + b_i"2)
Q@endlatex

n—1

Z(ai + 6;2)

=0

19.2 Comment cela fonctionne 7
Pour dessiner ces formules, PlantUML utilise deux projets OpenSource:
o AsciiMath qui convertit la notation AsciiMath vers une expression LaTeX.

¢ JLatexMath qui dessine une formule mathématique écrite en LaTeX. JLaTeXMath est le meilleur
projet Java pour dessiner du code LaTeX.

ASCIIMathTeXImg.js est suffisamment petit pour étre intégré dans la distribution standard de Plan-
tUML.

Comme JLatexMath est plus gros, vous devez le télécharger séparément, puis extraire les 4 fichiers (batik-
all-1.7.jar, jlatexmath-minimal-1.0.3.jar, jlm__cyrillic.jar et jlm__greek.jar) dans le méme répertoire que
PlantUML.jar.

§

Guide de référence du langage PlantUML (1.2025.0) 420 / 580

20 INFORMATION ENGINEERING DIAGRAMS

20 Information Engineering Diagrams

Information Engineering diagrams are an extension to the existing Class Diagrams.

This extension adds:

o Additional relations for the Information Engineering notation;

e An entity alias that maps to the class diagram class;

e An additional visibility modifier * to identify mandatory attributes.

Otherwise, the syntax for drawing diagrams is the same as for class diagrams. All other features of class

diagrams are also supported.

See also Chen Entity Relationship Diagrams.

[Ref. GH-31]

20.1 Information Engineering Relations

Type Symbol
Zero or One |o--
Exactly One |1--
Zero or Many | Yo--
One or Many | }|--

Examples:

@startuml

Entity01 }|..|| Entity02
Entity03 }o..ol| Entity04
Entity05 ||--o{ Entity06
Entity07 |o--|| Entity08
Q@enduml

(©)Entityo1

(©Entityos| | (©)Entityos

(©)Entityo7

4

+

%

9 I
[

¢

(©)Entityo2

A
(©Entityos| | (©)Entityos

(©)Entityos

20.2 Entities

@startuml

entity Entity0l {
* identifying_attribute
* mandatory_attribute
optional_attribute

X

@enduml

§

(B) Entityo1

* identifying_atiribute

+ mandatory_attribute
optional_attribute

Guide de référence du langage PlantUML (1.2025.0)

421 / 580

20.3 Complete Example 20 INFORMATION ENGINEERING DIAGRAMS

Again, this is the normal class diagram syntax (aside from use of entity instead of class). Anything
that you can do in a class diagram can be done here.

The * visibility modifier can be used to identify mandatory attributes. A space can be used after the
modifier character to avoid conflicts with the creole bold:

@startuml
entity EntityO1 {

optional attribute

**optional bold attributexx*

* **mandatory bold attributexx*
3

@enduml

(®) Entityot

optional attribute
optional bold attribute
* mandatory bold attribute

20.3 Complete Example

@startuml

' hide the spot
' hide circle

' avoid problems with angled crows feet
skinparam linetype ortho

entity "User" as e01 {
*user_id : number <<generated>>
*name : text
description : text

}

entity "Card" as e02 {
*card_id : number <<generated>>
sync_enabled: boolean
version: number
last_sync_version: number
*user_id : number <<FK>>
other_details : text

}

entity "CardHistory" as e05 {
*card_history_id : number <<generated>>
version : number
*card_id : number <<FK>>
other_details : text

by

entity "CardsAccounts" as e04 {
*id : number <<generated>>

card_id : number <<FK>>

§

Guide de référence du langage PlantUML (1.2025.0) 422 / 580

20.3 Complete Example 20

INFORMATION ENGINEERING DIAGRAMS

number <<FK>>
text

account_id :
other_details :

3

entity "Account" as e03 {
*account_id : number <<generated>>
user_id : number <<FK>>
other_details : text

3

entity "Stream" as e06 {
*id : number <<generated>>
version: number
searchingText: string
owner_id : number <<FK>>
follower_id : number <<FK>>
card_id: number <<FK>>

other_details : text

}

e01 }|..|| e02

e01 }|..|| e03

e02 }|..|| e05

e02 }|..|| e04

e03 }|..|| e04

e02 }..I| e06

e03 }..I| e06
@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

423 / 530

20.3 Complete Example

20 INFORMATION ENGINEERING DIAGRAMS

(B) user

* user_id : number «generated»

& name : text

description : text

v

|
|
=+

Card

» card_id : number «generated»
sync_enabled: boolean
version: number
last_sync_version: number

® user_id : number «FKx»

9 Account

e account_id : number «generated»

user_id : number «FK»
other_details : text

other_details : text S — —|¥ — 5!5
i

¥ ¥ | | |

| | | | |

| | | | |

| + | | |
|

* Stream ! 1 :::

CardHistory

version : number

e card_history_id : number «generated»

version: number
searchingText: string

® id : number «generated»

CardsAccounts

® id : number «generated»

e card_id : number «FK»
other_details : text

owner_id : number «FK»

Currently the crows feet do not look very good when the relationship is drawn at an angle to the entity.

card_id: number «FK»
other_details : text

follower id : number «FKx»

card_id : number «FK»
account_id : number «FK»
other_details : text

This can be avoided by using the linetype ortho skinparam.

§

Guide de référence du langage PlantUML (1.2025.0)

424 / 580

21 COMMANDES COMMUNES DANS PLANTUML

21 Commandes communes dans PlantUML

Découvrez les commandes fondamentales universellement applicables a tous les types de diagrammes dans
PlantUML. Ces commandes vous permettent d’injecter de la polyvalence et des détails personnalisés dans
vos diagrammes. Ci-dessous, nous répartissons ces commandes communes en trois catégories principales

21.0.1 Global Elements

« Comments : Ajoutez des remarques ou des notes explicatives dans le script de votre diagramme
pour transmettre des informations supplémentaires ou pour laisser des rappels en vue de modifica-
tions ultérieures.

e Notes : Incorporez des informations supplémentaires directement dans votre diagramme pour
faciliter la compréhension ou pour mettre en évidence des aspects importants.

o Size Control (Controle de la taille) : Ajustez les dimensions des différents éléments en fonction
de vos préférences, afin d’obtenir un diagramme équilibré et bien proportionné.

o Titre et légendes : Définissez un titre approprié et ajoutez des légendes pour clarifier le contexte
ou pour annoter des parties spécifiques de votre diagramme.

21.0.2 Description de la syntaxe créole

Exploitez la puissance de la syntaxe créole pour formater davantage le contenu de n’importe quel élément
de votre diagramme. Ce style de balisage wiki permet :

o Formatage du texte : Personnalisez ’apparence de votre texte avec différents styles et aligne-
ments.

e Listes : Créez des listes ordonnées ou non ordonnées pour présenter les informations de maniere
claire.

e Liens : Intégrez des hyperliens pour faciliter la navigation rapide vers les ressources pertinentes.

21.0.3 Commande de contréle du style

Controlez entierement le style de présentation de vos éléments de diagramme a ’aide de la commande
style. Utilisez-la pour :

e Définir des styles : Définir des styles uniformes pour les éléments afin de maintenir un théme
visuel cohérent.

e Personnaliser les couleurs : Choisir des couleurs spécifiques pour divers éléments afin d’améliorer
Pattrait visuel et de créer des classifications distinctes.

Explorez ces commandes pour créer des diagrammes & la fois fonctionnels et esthétiques, en adaptant
chaque élément & vos spécifications exactes.

21.1 Comments

21.1.1 Simple comment

Everything that starts with simple quote ' is a comment.

@startuml
'Line comments use a single apostrophe
@enduml

21.1.2 Block comment

Block comment use C-style comments except that instead of * you use an apostrophe ', then you can

also put comments on several lines using /' to start and '/ to end.

§

Guide de référence du langage PlantUML (1.2025.0) 425 / 580

21.2 Zoom 21 COMMANDES COMMUNES DANS PLANTUML

@startuml

/l

many lines comments
here

Y/

@enduml
[Ref. QA—15’53]

Then you can also put block comment on the same line, as:

O@startuml

/' case 1 '/ A ->B : AB-First step
B -> C : BC-Second step

/' case 2 '/ D -> E : DE-Third step

@enduml

EYT o g

| AB-Firststep !
—_—

BC-Second step

DE-Third step
—_—

[+] g [e]] €]
[Ref. QA-3906 and QA-3910]

21.1.3 Full example

@startuml
skinparam activity {
' this is a comment
BackgroundColor White
BorderColor Black /' this is a comment '/
BorderColor Red ' this is not a comment and this line is ignored

start
:fool;
@enduml

fool

[Ref. GH-21}]

21.2 Zoom

You can use the scale command to zoom the generated image.

You can use either a number or a fraction to define the scale factor. You can also specify either width
or height (in pizel). And you can also give both width and height: the image is scaled to fit inside the
specified dimension.

e scale 1.5
e scale 2/3
e scale 200 width

§

Guide de référence du langage PlantUML (1.2025.0) 426 / 580

21.3 Title 21 COMMANDES COMMUNES DANS PLANTUML

e scale 200 height

e scale 200%100

e scale max 300%200

e scale max 1024 width
e scale max 800 height

@startuml
scale 180%90
Bob->Alice : hello

@enduml
Bob | | Alica
el
Bob | | Alica
21.3 Title

The title keywords is used to put a title. You can add newline using \n in the title description.
Some skinparam settings are available to put borders on the title.

@startuml

skinparam titleBorderRoundCorner 15

skinparam titleBorderThickness 2

skinparam titleBorderColor red

skinparam titleBackgroundColor Aqua-CadetBlue

title Simple communication\nexample

Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

| Simple communication |
AHCE‘ Bob‘

| Authentication Request |

@enduml

' Authentication Response |

-
| |

‘AHCE |Bob‘

You can use creole formatting in the title.

You can also define title on several lines using title and end title keywords.

@startuml

title

<u>Simple</u> communication example

on <i>several</i> lines and using <back:cadetblue>creole tags</back>
end title

Alice -> Bob: Authentication Request
Bob -> Alice: Authentication Response

§

Guide de référence du langage PlantUML (1.2025.0) 427 / 580

21.4 Caption 21 COMMANDES COMMUNES DANS PLANTUML

@enduml
Simple communication example
on several lines and using *

‘AME| Bo |

| Authentication Request |

' Authentication Response |

‘AME| ‘Bob|

21.4 Caption

There is also a caption keyword to put a caption under the diagram.
@startuml

caption figure 1
Alice -> Bob: Hello

@enduml

e (30

' Hello 1
—_—

o] 30

figure 1

21.5 Footer and header

You can use the commands header or footer to add a footer or a header on any generated diagram.
You can optionally specify if you want a center, left or right footer/header, by adding a keyword.
As with title, it is possible to define a header or a footer on several lines.

It is also possible to put some HTML into the header or footer.

@startuml

Alice -> Bob: Authentication Request

header

Warning:
Do not use in production.
endheader

center footer Generated for demonstration

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 428 / 580

21.6 Legend the diagram

21 COMMANDES COMMUNES DANS PLANTUML

]

' Authentication Request |

Waming:

o0

e

21.6 Legend the diagram

The legend and end legend are keywords is used to put a legend.

5

You can optionally specify to have left, right, top, bottom or center alignment for the legend.

@startuml
Alice -> Bob : Hello
legend right

Short
legend
endlegend
@enduml
AHoe‘ Bob|
:Ham E
AHDE‘ Bob|
Short
legend
@startuml

Alice -> Bob : Hello
legend top left
Short
legend
endlegend
@enduml

Short

legend

Alice | Bob ‘
:Hmm E

1
AHDe| Bob‘

21.7 Appendix: Examples on all diagram
21.7.1 Activity

@startuml
header some header

footer some footer

§

Guide de référence du langage PlantUML (1.2025.0)

429 / 580

21.7 Appendix: Examples on all diagram 21

COMMANDES COMMUNES DANS PLANTUML

title My title
caption This is caption

legend
The legend
end legend

start

:Hello world;

:This is defined on
several **xlines*x;
stop

@enduml

My title

?

-

-

| Hello world |

",

2

This is defined on

several lines

==

The legend

This is caption

21.7.2 Archimate

@startuml
header some header

footer some footer
title My title

caption This is caption
legend

The legend
end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>

rectangle GO #lightgreen
rectangle STOP #red
rectangle WAIT #orange

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

J

430 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

My title

=
VPN Server G0

WAIT

The legend

This is caption

21.7.3 Class

@startuml
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

a-—-b

Q@enduml

This is caption

21.7.4 Component, Deployment, Use-Case

@startuml
header some header

footer some footer

§

Guide de référence du langage PlantUML (1.2025.0) 431 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

title My title

caption This is caption
legend

The legend

end legend

node n

(w) > [c]

@enduml

My title

-~ £
S ® n

The legend

This is caption

|
.

{ \‘,
| = |

21.7.5 Gantt project planning

@startgantt
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

[t] lasts 5 days
Q@endgantt

My title

123,458

1'2 ' 3'4'°58

This is caption

TODO: DONE [(Header, footer) corrected on V1.2020.18]

21.7.6 Object
@startuml

§

Guide de référence du langage PlantUML (1.2025.0) 432 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

object user {

name = "Dummy"
id = 123

@enduml

My title

user |

name = "Dummy"
id =123

This is caption

21.7.7 MindMap

O@startmindmap
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

* r

** d1

** d2

@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0) 433 / 580

21.7 Appendix: Examples on all diagram

21 COMMANDES COMMUNES DANS PLANTUML

21.7.8 Network (nwdiag)

@startuml
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

nwdiag {

network inet {

web01l [shape = cloud]

}
¥

@enduml

21.7.9 Sequence

@startuml
header some header

footer some footer

§

Guide de référence du langage PlantUML (1.2025.0)

The legend

This is caption

My title
inet
__.---\-'v'\..—_
I> web01 f

R

The legend

This is caption

434 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

title My title

caption This is caption
legend

The legend

end legend

a->b

@enduml

My title
o] [e)
—>
el
The legend

This is caption

21.7.10 State

@startuml
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

[*] --> Statel
Statel -> State2

@enduml

My title

(statet | [state2 |

| “ |

J \ Y,

This is caption

§

Guide de référence du langage PlantUML (1.2025.0) 435 / 580

21.7 Appendix: Examples on all diagram 21

COMMANDES COMMUNES DANS PLANTUML

21.7.11 Timing

@startuml
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

©100
WU is Waiting

WB is Processing

@300
WB is Waiting

@enduml

My title

| Web Browser /

| Idle —
_U“elesegf

Waiting
Processing

Waiting

r T
0 100

T

| The legend |

This is caption

21.7.12 Work Breakdown Structure (WBS)

@startwbs
header some header

footer some footer
title My title

caption This is caption
legend

§

Guide de référence du langage PlantUML (1.2025.0)

300

436 / 580

21.7 Appendix: Examples on all diagram 21 COMMANDES COMMUNES DANS PLANTUML

The legend
end legend

* r
*x dl
**x d2

Q@endwbs
My title

d1 d2

The legend

This is caption

TODO: DONE [Corrected on V1.2020.17]

21.7.13 Wireframe (SALT)

@startsalt
header some header

footer some footer
title My title
caption This is caption

legend
The legend
end legend

{+
Login | "MyName "
Password | "xxxx "
[Cancel]l] | [OK]

}

Q@endsalt

My title

Login MyName
Password ****

This is caption

«
&« Guide de référence du langage PlantUML (1.2025.0) 437 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

TODO: DONE [Corrected on V1.2020.18]

21.8 Appendix: Examples on all diagram with style
TODO: DONE
FYI:
o all is only good for Sequence diagram
e title, caption and legend are good for all diagrams except for salt diagram
TODO: FIXME

o Now (test on 1.2020.18-19) header, footer are not good for all other diagrams except only for
Sequence diagram.

To be fix; Thanks
TODO: FIXME
Here are tests of title, header, footer, caption or legend on all the diagram with the debug style:

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

3

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32

}

</style>

21.8.1 Activity

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

«
&« Guide de référence du langage PlantUML (1.2025.0) 438 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32
}
</style>
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

start

:Hello world;

:This is defined on
several **xlines*x;

stop

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

439 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

some header

My title

A

./- -\.
| Hello world |
\)

This is defined on |

rd

several lines
b

The legend

This is caption

some footer

21.8.2 Archimate

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

¥

§

Guide de référence du langage PlantUML (1.2025.0)

440 / 530

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32
}

</style>

header some header

footer some footer

title My title

caption This is caption

legend

The legend

end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>
rectangle GO #lightgreen

rectangle STOP #red
rectangle WAIT #orange

Q@enduml
some header
My title
VPN%erver GO
o
The legend
This is caption
some footer
21.8.3 Class
@startuml
<style>
title {

HorizontalAlignment right
FontSize 24

§

Guide de référence du langage PlantUML (1.2025.0) 441 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

FontColor blue
}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {

FontSize 32
}

</style>

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

a-b>b

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

442 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

some header
My title

The legend

This is caption
some footer

21.8.4 Component, Deployment, Use-Case

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

§

Guide de référence du langage PlantUML (1.2025.0)

443 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32
}

</style>

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

node n

(w) -> [c]
@enduml

some header
My title

The legend

This is caption
some footer

21.8.5 Gantt project planning

O@startgantt

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

b

header {
HorizontalAlignment center
FontSize 26
FontColor purple

§

Guide de référence du langage PlantUML (1.2025.0) 444 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

3

caption {
FontSize 32
}

</style>

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

[t] lasts 5 days

Q@endgantt
some header
My title

123,45

12 3 4°5

The legend

This is caption
some footer

§

Guide de référence du langage PlantUML (1.2025.0) 445 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

21.8.6 Object

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32
}

</style>

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

object user {

name = "Dummy"
id = 123

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

446 / 530

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

some header

My title

\ user \
name = "Dummy"
id=123

The legend

This is caption

some footer

21.8.7 MindMap

@startmindmap

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

3

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32
}
</style>
header some header

§

Guide de référence du langage PlantUML (1.2025.0)

447 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

footer some footer
title My title

caption This is caption
legend

The legend

end legend

* r

**k dl

*x d2

@endmindmap

some header
My title

The legend

This is caption
some footer

21.8.8 Network (nwdiag)

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

§

Guide de référence du langage PlantUML (1.2025.0) 448 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32
}
</style>
header some header

footer some footer
title My title
caption This is caption
legend
The legend
end legend
nwdiag {

network inet {

web01 [shape = cloud]

}
}

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0)

449 / 530

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

some header

My title

T e

Id "y
soweb01 <
|]

The legend

This is caption

some footer

21.8.9 Sequence

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32

}

</style>

§

Guide de référence du langage PlantUML (1.2025.0)

450 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

a->b
@enduml

some header
My title

g

.

]]
2 o]

The legend

This is caption
some footer

21.8.10 State

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

X

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28

§

Guide de référence du langage PlantUML (1.2025.0)

451 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

FontColor red
}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

¥

caption {
FontSize 32
}

</style>

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

[*] --> Statel
Statel -> State2

@enduml

some header
My title

State1] State2 |

The legend

This is caption
some footer

§

Guide de référence du langage PlantUML (1.2025.0) 452 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

21.8.11 Timing

@startuml

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

¥

footer {
HorizontalAlignment left
FontSize 28
FontColor red

3

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

caption {
FontSize 32

}
</style>
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting
WB is Processing

@300
WB is Waiting

«
&« Guide de référence du langage PlantUML (1.2025.0)

453 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

@enduml

some header
My title

Web Browser,/ !
Waiting

Processing
Idle :
Web User /

ﬁ‘!ﬂ'ﬁﬁﬂmm;

T T T T 1
0 100 300

The legend

This is caption
some footer

21.8.12 Work Breakdown Structure (WBS)

@startwbs

<style>

title {
HorizontalAlignment right
FontSize 24
FontColor blue

}

header {
HorizontalAlignment center
FontSize 26
FontColor purple

}

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

X

§

Guide de référence du langage PlantUML (1.2025.0) 454 / 580

21.8 Appendix: Examples on all diagram with 2tylilCOMMANDES COMMUNES DANS PLANTUML

caption {
FontSize 32
}

</style>

header some header
footer some footer
title My title
caption This is caption
legend

The legend

end legend

* r

**k dl

*x*k d2

Q@endwbs

21.8.13 Wireframe (SALT)

some header
My title

d1 dz2

The legend

This is caption

some footer

TODO: FIXME Fix all (title, caption, legend, header, footer) for salt. TODO: FIXME

@startsalt
<style>
title {

HorizontalAlignment right

FontSize 24
FontColor blue
}

§

Guide de référence du langage PlantUML (1.2025.0)

455 / 580

21.9 Mainframe 21 COMMANDES COMMUNES DANS PLANTUML

header {
HorizontalAlignment center
FontSize 26
FontColor purple

3

footer {
HorizontalAlignment left
FontSize 28
FontColor red

}

legend {
FontSize 30
BackGroundColor yellow
Margin 30
Padding 50

b

caption {
FontSize 32
}
</style>
@startsalt
header some header

footer some footer
title My title
caption This is caption

legend
The legend
end legend

{+
Login | "MyName
Password | "xxxx "
[Cancel] | [0K 1]

}

@endsalt

My title

Login MyName
Password *™*

I CanDeI” OK l

This is caption

21.9 Mainframe

@startuml
mainframe This is a **mainframe*x*

«
&« Guide de référence du langage PlantUML (1.2025.0) 456 / 580

21.10 Appendix: Examples of Mainframe on aldiag@MMANDES COMMUNES DANS PLANTUML

Alice->Bob : Hello
@enduml

[Ref. QA-4019 and Issue#148]

21.10 Appendix: Examples of Mainframe on all diagram

21.10.1 Activity

@startuml

mainframe This is a **mainframe*x*

start
:Hello world;

:This is defined on

several **xlines*x;
stop
Q@enduml

21.10.2 Archimate

@startuml

mainframe This is a **mainframe*x*

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>
rectangle GO #lightgreen

rectangle STOP #red

rectangle WAIT #orange

@enduml

§

Thmisarnmnﬁan@)

‘AHGE‘ ‘Bob|

I Hello
_

‘AHGE‘ ‘Bob|

Thmisarnmnﬁan@)

*

|. Hello world |
. y

This is defined on
several lines

,

Guide de référence du langage PlantUML (1.2025.0)

457 / 580

21.10 Appendix: Examples of Mainframe on aldiag@MMANDES COMMUNES DANS PLANTUML

This is a mainfrarne)

)
VPN Server

TODO: FIXME Cropped on the top and on the left TODO: FIXME

21.10.3 Class

@startuml
mainframe This is a **mainframe*x*

a-—-b>b
@enduml

This is a mainframe)

TODO: FIXME Cropped on the top and on the left TODO: FIXME

21.10.4 Component, Deployment, Use-Case

@startuml
mainframe This is a **mainframe*x*

node n
(u) -> [c]

@enduml

This is a mainfrarne)
- I £
J c n

TODO: FIXME Cropped on the top and on the left TODO: FIXME

.‘J_“.
(=

21.10.5 Gantt project planning
@startgantt

mainframe This is a **mainframe**
[t] lasts 5 days

Q@endgantt

§

Guide de référence du langage PlantUML (1.2025.0) 458 / 580

21.10 Appendix: Examples of Mainframe on aldiag@MMANDES COMMUNES DANS PLANTUML

Thmisarnmnﬁan@)

1123458

123 4°5

TODO: FIXME Cropped on the top and on the left TODO: FIXME

21.10.6 Object

@startuml
mainframe This is a **mainframe*x*

object user {
name = "Dummy"
id = 123

}

@enduml

This is a mainframe)

| user l

name = "Dummy"
id=123

TODO: FIXME Cropped on the top! TODO: FIXME

21.10.7 MindMap

@startmindmap
mainframe This is a **mainframe*x*

* r

** dl

** d2
@endmindmap

This is a mainframe)

21.10.8 Network (nwdiag)

@startuml
mainframe This is a **mainframe*x*

nwdiag {
network inet {
web01 [shape = cloud]
}
}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 459 / 580

21.10 Appendix: Examples of Mainframe on aldiag@MMANDES COMMUNES DANS PLANTUML

Thmisarnmnﬁan@)

T e

p .
1 Y
2 web01 <
()
o J

R

TODO: FIXME Cropped on the top! TODO: FIXME

21.10.9 Sequence

@startuml
mainframe This is a **mainframe*x*

a->b
Q@enduml

Thmisalnmnﬁan@)

2 o]
])I

1[5)

21.10.10 State

@startuml
mainframe This is a **mainframe*x*

[*] --> Statel
Statel -> State2
@enduml

Thmisarnmnﬁan@)

| State1 h (FStateE-\]
[|

b A h

Y

TODO: FIXME Cropped on the top and on the left TODO: FIXME

21.10.11 Timing

@startuml
mainframe This is a **mainframe*x*

robust "Web Browser" as WB
concise "Web User" as WU
@0

WU is Idle

§

Guide de référence du langage PlantUML (1.2025.0) 460 / 580

21.10 Appendix: Examples of Mainframe on aldiag@MMANDES COMMUNES DANS PLANTUML

WB is Idle

@100

WU is Waiting

WB is Processing
@300

WB is Waiting
Q@enduml

Thisis a mainfrarne)

Web Browser /

['Waiting
Processing

Idle
|Web User/
T Ly Ly Ly L
0 100 300

21.10.12 Work Breakdown Structure (WBS)

@startwbs

mainframe This is a **mainframe*x*

* T

** di
** d2
Q@endwbs

This is a mainframe)

d1 d2

21.10.13 Wireframe (SALT)

@startsalt
mainframe This is a **mainframe*x*
{+
Login | "MyName "
Password | "xxxx "
[Cancel]l | [OK]
}
@endsalt

§

Thmisalnmnﬁan@)

Login MyMame
Password

Cancel

Guide de référence du langage PlantUML (1.2025.0)

461 / 530

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

21.11 Appendix: Examples of title, header, footer, caption, legend and main-
frame on all diagram

21.11.1 Activity

@startuml
mainframe This is a **mainframe*x*
header some header

footer some footer
title My title

caption This is caption
legend

The legend

end legend

start

:Hello world;

:This is defined on
several **xlines*x;

stop

@enduml

My title

Thmisalnmnﬁan@)

*

|. Hello world |
This is defined on
several lines

- A
The legend

This is caption

21.11.2 Archimate

@startuml

mainframe This is a **mainframe*x*
header some header

footer some footer

title My title

caption This is caption

§

Guide de référence du langage PlantUML (1.2025.0) 462 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

legend

The legend

end legend

archimate #Technology "VPN Server" as vpnServerA <<technology-device>>
rectangle GO #lightgreen

rectangle STOP #red

rectangle WAIT #orange

@enduml

My title

Thmisarnmnﬁan@)

[}
VPN Server

The legend

This is caption

i

21.11.3 Class

@startuml

mainframe This is a **mainframe*x*
header some header

footer some footer

title My title

caption This is caption

legend

The legend

end legend

a-—-b>b

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

463 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

My title

Thmisarnmnﬁan@)

©-

©b

The legend

This is caption

21.11.4 Component, Deployment, Use-Case
@startuml

mainframe This is a **mainframe*x*

header some header

footer some footer

title My title

caption This is caption

legend

The legend

end legend

node n

w —> [c]

Q@enduml

My title

Thmisalnmnﬁan@)

I — 5
| = |

-,]
A c n

The legend

This is caption

21.11.5 Gantt project planning

O@startgantt
mainframe This is a **mainframe*x*
header some header

§

Guide de référence du langage PlantUML (1.2025.0)

464 / 530

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

footer some footer
title My title

caption This is caption
legend

The legend

end legend

[t] lasts 5 days

Q@endgantt

My title

Thmisalnmnﬁamg)

123,45

[

12 3 458

The legend

This is caption

21.11.6 Object
@startuml

mainframe This is a **mainframe*x*
header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

object user {

name = "Dummy"
id = 123

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 465 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

My title

Thmisarnmnﬁan@)

| user |

name = "Dummy"
id =123

The legend

This is caption

21.11.7 MindMap
@startmindmap

mainframe This is a **mainframe*x*
header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

* r

*%x dil

**x d2

@endmindmap

My title

Thmisarnmnﬁan@)

This is caption

21.11.8 Network (nwdiag)

@startuml
mainframe This is a **mainframe*x*
header some header

§

Guide de référence du langage PlantUML (1.2025.0)

466 / 530

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

footer some footer
title My title
caption This is caption

legend
The legend
end legend

nwdiag {
network inet {
web01 [shape = cloud]
}
}

@enduml

21.11.9 Sequence

@startuml

mainframe This is a **mainframe*x*

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

a->b
@enduml

§

My title

Thmisalnmnﬁan@)

inet

The legend

This is caption

Guide de référence du langage PlantUML (1.2025.0)

467 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

My title

Thmisalnahﬂrmnq)

]

Iﬁl
(] [¢]
The legend

This is caption

21.11.10 State

@startuml

mainframe This is a **mainframe*x*
header some header

footer some footer

title My title

caption This is caption

legend

The legend

end legend

[*] --> Statel
Statel -> State2

@enduml

My title

Thmisarnmnﬁan@)

| State1 h
[|

b A h 4

The legend

This is caption

Y

21.11.11 Timing

@startuml
mainframe This is a **mainframe*x*

§

Guide de référence du langage PlantUML (1.2025.0) 468 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

header some header
footer some footer
title My title

caption This is caption
legend

The legend

end legend

robust "Web Browser" as WB
concise "Web User" as WU

@0
WU is Idle
WB is Idle

@100
WU is Waiting

WB is Processing

@300
WB is Waiting

@enduml

My title

Thmisarnmnﬁan@)

| Web Browser/

Waiting
Processing
Idle

|Web User,/
Waiting
L] L] L] L
0 100 300

—_—]

| The legend

This is caption

21.11.12 Work Breakdown Structure (WBS)

@startwbs

mainframe This is a **mainframe*x*
header some header

footer some footer

title My title

caption This is caption

§

Guide de référence du langage PlantUML (1.2025.0) 469 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

legend
The legend
end legend

*x r
**x dl
*x*x d2

Q@endwbs

My title

This is a mainframe)

d1 d2

The legend

This is caption

21.11.13 Wireframe (SALT)

@startsalt
mainframe This is a **mainframe*x*
header some header

footer some footer
title My title
caption This is caption

legend
The legend
end legend

{+
Login | "MyName
Password | "xxxx "
[Cancel]l] | [OK]

}

@endsalt

«
&« Guide de référence du langage PlantUML (1.2025.0) 470 / 580

21.11 Appendix: Examples of title, header, foa2ér, PN ABGOHS 1@ MkihiNK I0A NB PN UML

My title

Thisis a mainframe)

Login MyMame

Password ™

Cancel

This is caption

§

Guide de référence du langage PlantUML (1.2025.0) 471 / 580

22 CREOLE

22 Créole

Le créole est un langage de balisage léger commun & divers wikis. Un moteur créole léger est intégré a
PlantUML afin de disposer d’'un moyen normalisé d’émettre du texte stylé.

Tous les diagrammes prennent en charge cette syntaxe.

Notez que la compatibilité avec la syntaxe HTML est préservée.

22.1 Texte mis en évidence

@startuml
Alice -> Bob : hello --there-- here
Some ~~long delay~~
Bob -> Alice : ok
note left
This is **bold*x*
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~
end note
@enduml

]

! hello #kere here

_—
Some long dalay
This is bold | |
This is italics X !
This is monospaced " ok i
This is strieken-out B S —
This is underlined : :
This is wave-underlined |1 [
|Ahce| ‘Bob‘

22.2 Listes

Vous pouvez utiliser des listes numérotées et a puces dans le texte des nceuds, les notes, etc.

TODO: FIXME Vous ne pouvez pas tout a fait mélanger les chiffres et les puces dans une liste et sa
sous-liste

@startuml
object demo {
* Bullet list
* Second item
}
note left
* Bullet list
* Second item
** Sub item
end note

legend
Numbered list
Second item

§

Guide de référence du langage PlantUML (1.2025.0) 472 / 580

22.3 Caractere d’échappement

22 CREOLE

Sub item
Another sub item

* Can't quite mix
* Numbers and bullets

Third item
end legend

@enduml

« Bullet list . demo

* Second item ————1 & Bullet list

* Sub item

- ™
1. Numbered list

2. Second item
1. Sub item
2. Ancther sub item
* Can't quite mix
* Mumbers and bullets
k3_ Third item

22.3 Caractere d’échappement

Vous pouvez utiliser le tilde ~ pour échapper les caracteres Créoles spéciaux.

O@startuml
object demo {

This is not ~__
This is not ~

}

@enduml

22.4 Entétes

@startuml

usecase UC1 as "

= Extra-large heading
Some text

== Large heading
Other text

=== Medium heading
Information

==== Small heading"

@enduml

§

_underscored__.
monospaced"".

+ Second item

demo

This is not ___underscored__.
This is not "'monospaced™.

Guide de référence du langage PlantUML (1.2025.0)

473 / 580

22.5 Emoji 22 CREOLE

;"/ Extra-large heading\\

Some text
f Large heading III
| Other text |
\ Medium heading /
Information

. Smallheading

22.5 Emoji

All emojis from Twemoji (see EmojiTwo on Github) are available using the following syntax:

@startuml

Alice -> Bob : Hello <:1£f600:>

return <:innocent:>

Alice -> Bob : Without color: <#0:sunglasses:>
Alice -> Bob : Change color: <#green:sunny:>

@enduml
Alice ‘ ‘ Bob

.
>

1
1

| 1]
| Hello =
1
1
1

s
—

! Without color:

B S

: Change color: -

¥

me] |

g

Unlike Unicode Special characters that depend on installed fonts, the emoji are always available. Fur-
thermore, emoji are already colored, but you can recolor them if you like (see examples above).

One can pick emoji from the emoji cheat sheet, the Unicode full-emoji-list, or the flat list emoji.txt in
the plantuml source.

You can also use the following PlantUML command to list available emoji:

@startuml
emoji <block>
@enduml

As of 13 April 2023, you can select between 1174 emoji from the following Unicode blocks:

o Unicode block 26: 83 emoji

e Unicode block 27: 33 emoji

e Unicode block 1F3: 246 emoji
e Unicode block 1F4: 255 emoji
e Unicode block 1F5: 136 emoji
o Unicode block 1F6: 181 emoji
e Unicode block 1F9: 240 emoji

§

Guide de référence du langage PlantUML (1.2025.0) 474 / 580

22.6 Lignes horizontales

22 CREOLE

22.5.1 Unicode block 26

@startuml
emoji 26
@enduml

Emoji available on Unicode Block 26
(Blocks available: 26, 27, 1F3, 1F4, 1F5, 1F6, 1F9)
<:2600:> <:isunny:>

£2601:> <:cloud:>

~

12602 :> T?(:Dp&niumhrglla:)

A

~

- . .
$2603:> TECOES <ispowman_with snow:>

260a:> & & <:comet:s

:260e:> ERER < :phone:>

co611:> DD« palior box with check:s
:2614:> WML uprenta:s

i2615:> WD B

A

A

A

A

coffee:>

A

12618 :> ﬁ\ﬁ\'s’:L’-l’t.a]h!nck:)

A

A

1261d:> © <ipoint_up:>

A

:2620:> S M, <:skull and crossbones:>

12622:> ®®<::ﬂdloactlve:>

A

12623 :> @ @ <:bichazard:>

A

12626

A

orthedex_cross:>

1262a:
:262e:> BB <:peace sympo1:>
cz62r:> (@@ <:yin yang:»
12633 <:wheel_of_dha:ma:>

oo
0> B < frowning face:>

A

<:star_and crescenti>

AA A A
X
&
w
el

> & & <irelaxed:>
12640:> ﬂax‘:femlaislgr_:)
126421 mﬂ<:ma1e_51qr_:>
:2648:> <:a:125:;
:2649:> (SBREd<:taurus:>
:264a:> I < gemini:>
:264b:> <:cance::')

12640 mm<:leo:)

A
r
&

"
[

A

A

A

A

A

A

~

22.6 Lignes horizontales

@startuml
database DB1 as "
You can have horizontal line

Or double line

Or strong line

ag_aotted line
..My title..
Enjoy!

note right

This is working also in notes

~

”

n

”

~

"

~

"

n

n

"

n

"

n

"

n

"

"

n

"

~

"

~

a

~

~

n

”

12641

$2650

$2652::

12653:

t265%:

12660:

12663:

12665:

12666:

12668:

1267h:

1267e:

1267fF:

12602:

126093:

12694:

126095::

12696

12697

12699

1269

1269c

126a0:

126al

>

>

>

> A <
o AR
> B8
T o X

>

1>

You can also add title in all these lines

==Title==
——Another title--
end note

@enduml

3

1264d:> <:v
1264e:
> I <:
> BB

12651 ::

<

~

irgo:>

tlibra:>

scorpius:>

sagittarius:>

rcapricorn:>
raguarius:>
<ipisces:>
<:chess_pawn:>
:spades:>

rolubs:>

:hearts:>
rdiamonds:>
thotsprings:>
rrecycle:>
rinfinity:>
:wheelchair:>
:hammer_and pick:>
ranchor:>
rorossed_swords:>
:medical symbol:>

ibalance_scale:>

alembic:>
gear:>
atom_symbol:>
fleur_de lis:>

warning:>

rzap:>

126a7:> EE(:

transgender symbol:>

Guide de référence du langage PlantUML (1.2025.0)

A

A

A

A

A

A

A

A

A

A

A

A

A

t26aa:
:26ab:> ..<:black_c1:cle:>
126b0:
t26bl:
:26bd:
:28be:
126c4:
126c5:
126c8:
126ce:

126cf

126d3:
i cc(:noiéht:y:)
:> TFTT <:sninto_shriness

126d4

126e9

126ea:

1260

126f1:

126F2:

126£3:

126T4:

1265

126T7:

126f8:

12619:

t26fa:

126fd:

>

>

>

>

>

>

>

>

>

&é
L X

i\ ia
e

= =
E7 B

AR

'Y Y
r?\ /f\

w
-
-

x

cd A

W
s s

<:white_circle:>

<:coffin:>
<:funeral_urn:>

<:isoccer:s

:baseball:>

A

<:snowman:>
<:partly sunny:>
<:clond with lightning and rain:>

<:ophiuchus:>

o NN <ipiokis

126dl:

<:rescue_worker helmet:>

<:chains:>

<:church:>
<:mountain:>
<:parasol on_ground:>
<:fountain:>
<:igolf:>

<:ferry:>

<:boat:>

<iskier:>

- <:ice skate:>

A

tbouncing ball person:>
<:itent:>

<:fuelpump:>

475 / 580

22.7 Links

22 CREOLE

22.7 Links

e e e e
Or double line
o

Or strong line
Or dotted lin

You can also use URL and links.

This is working also in notes

You can also add title in all these lines

Titl

I,

Another title——————

Simple links are define using two square brackets (or three square brackets for field or method on class

diagram).

Example:

e [[http://plantuml.com]]

e [[http://plantuml.com This label is printed]]

o [[http://plantuml.com{Optional tooltip} This label is printed]]

URL can also be authenticated.

22.8 Code

Vous pouvez utiliser <code> pour afficher du code de programmation dans votre diagramme (désolé, la

coloration syntaxique n’est pas encore supportée)

@startuml

Alice -> Bob :

note right
<code>
main() {

hello

printf ("Hello world");

}

</code>
end note
Q@enduml

@startuml

Alice -> Bob :

note left
<code>

=) 2]

hello !

main ()
printf("Hello world");

|AHDE |Bob‘

C’est particulierement utile pour illustrer un code PlantUML et le rendu qui en résulte

hello

This is **bold**

This is //italics//

This is ""monospaced""
This is —--stricken-out--
This is __underlined__

§

Guide de référence du langage PlantUML (1.2025.0)

476 / 580

22.9 Tableau

22 CREOLE

This is ~~wave-underlined~~
--test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
</code>
end note
note right
This is **bold*x*
This is //italics//
This is ""monospaced""
This is --stricken-out--
This is __underlined__
This is ~~wave-underlined~~
—-—test Unicode and icons--
This is <U+221E> long
This is a <&code> icon
end note
Q@enduml

AHCE‘ Bob|
[,

o= ..bo'_d..
ffitalies//

This is bold
This is italics
This is monospaced

" "rﬂo:‘.ospaced"“

This is steken-aut
_underlined This is underlined
This is ~~wave-underlined~~ This is wave-underlined

—test Unicode and icons—
This is == long
This is a «* icon

]

]

]

]

]

]

]

]
This is --stricken-out-- i
]

]

]

]
——test Unicode and icons-- i
This is <U+221E> long \
]

This i= a <&code> icon

hello

—

e [52

22.9 Tableau
22.9.1 Créer un tableau
Il est possible de construire un tableau, avec le séparateur |

@startuml
skinparam titleFontSize 14
title
Example of simple table
=	= table	= header
a	table	row
b	table	row
end title
[¥*] --> Statel
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

477 / 580

22.9 Tableau 22 CREOLE

Example of simple table
table |header
a|table |row

b|table | row

:

™y

State

22.9.2 Ajouter une couleur sur les lignes ou les cellules
Vous pouvez spécifier les couleurs de fond des lignes et des cellules

@startuml

start

:Here is the result

|= |= table |= header |

| a | table | row |

| <#FF8080> red |<#80FF80> green |<#8080FF> blue |

<#yellow>| b | table | row |;

@enduml
. Here is the result

-

table |header
a |[table |row
red |green
b |table |row

22.9.3 Ajouter une couleur sur la bordure et le texte

Vous pouvez également spécifier les couleurs du texte et des bordures

@startuml
title
<#lightblue,#red>|= Step |= Date |[= Name |= Status |= Link |
<#lightgreen>| 1.1 | TBD | plantuml news |<#Navy><color:OrangeRed> Unknown | [[https://plant
end title
@enduml
Step | Date | Name Status Link
11 TBD | plantuml news lantuml news

[Réf. QA-718])

22.9.4 Pas de bordure ou méme couleur que le fond

Vous pouvez également définir la couleur de la bordure sur la méme couleur que le fond

@startuml

node n

note right of n
<#FBFB77 ,#FBFB77>|= Husky / Yorkie |= Foo |
| SourceTreel | fool |
| ST2 | foo2 |

§

Guide de référence du langage PlantUML (1.2025.0) 478 / 580

22.10 Arbre 22 CREOLE

end note
@enduml

J Husky | Yorkie Foo
———_ SourceTree1 foo1
} 572 foo2

[Réf. QA-12448)

22.9.5 En-téte en gras ou non

= comme premier caractére d’une cellule indique s’il faut la mettre en gras (généralement utilisé pour les
en-tétes) ou non

@startuml
note as deepCSSO

|<#white> Husky / Yorkie |

| =<#gainsboro> SourceTreel |
endnote

note as deepCSS1

|= <#white> Husky / Yorkie |= Foo |

| <#gainsboro><r> SourceTreel | fool |
endnote

note as deepCSS2

|= Husky / Yorkie |

| <#gainsboro> SourceTree2 |
endnote

note as deepCSS3
<#white>|= Husky / Yorkie |= Foo |
| <#gainsboro> SourceTreel | fool |
endnote
@enduml

Husky / Yorkie Husky ! Yorkie [Foo
SourceTreel SourceTreel |foo1

Husky ! Yorkie Husky | Yorkie |Foo
SourceTree2 SourceTree1 |foo1

[Réf. QA-10923)

22.10 Arbre

Vous pouvez utiliser les caractéres |_ pour construire un arbre.
Sur les commandes courantes, comme le titre

@startuml
skinparam titleFontSize 14
title
Example of Tree
| _ First line
| _ **Bom (Model)x*x*
|_ propl
| _ prop2

§

Guide de référence du langage PlantUML (1.2025.0) 479 / 580

22.10 Arbre

22 CREOLE

| _ prop3
| _ Last line
end title
[¥*] --> Statel
Q@enduml

Example of Tree
First line
Bom (Model)

prop1
prop2
prop3
Last line

| State1 |

s 4

Sur un diagramme de classes.

(Veuillez noter que nous devons utiliser un deuxiéme compartiment vide, sinon les parenthéses dans

(Modele) font que le texte est déplacé dans un premier compartiment séparé)

@startuml
class Foo {
**Bar (Model) **

|_ prop
| _ *xBom (Model) **
| _ prop2
| _ prop3
| _ prop3.1
| _ propd :(
}
@enduml
(:) Foo
Bar (Model)
prop
Bom (Model
prop2
prop3
prop3.1
prop4 (

[Réf. QA-3448)
Sur les diagrammes de composants ou de déploiement

@startuml
[A] as A
rectangle "Box B" {
component B [
Level 1
| _ Level 2a
| _ Level 3a
| _ Level 3b

§

Guide de référence du langage PlantUML (1.2025.0)

480 / 580

22 CREOLE

22.11 Caractéres spéciaux

| _ Level 3c
| _ Level 4a
| _ Level 3d
|_ Level 2b
| _ Level 3e
]

}

A ->B

@enduml

[Réf. QA-11365]

B

22.11 Caracteres spéciaux

Box B

Level 1
Level 2a
Level 3a
Level 3b
Level 3c

Level 4a

Level 3d
Level 2b
Level e

Il est possible d’utiliser n’importe quel caractere unicode, soit directement soit avec la syntaxe &#XXX ou

<U+XXXX>

@startuml

usecase direct as "this is o long"

usecase ampHash as "this is also ∞ long"

usecase angleBrackets as "this is also <U+221E> long"

@enduml

¢ thisis eolong

{“tmsisamu oo long

(thisisalso o long

A

"

A

=,

Please note that not all Unicode chars appear correctly, depending on what fonts are installed (on

your local system or the PlantUML server, depending on which one you use).

For characters that

are emoji, it’s better to use the [Emoji](https://plantuml.com/creole#68305¢25f5788db0) notation. See

[Issue 72](https://github.com/plantuml/plantuml/issues/72) for more details.

22.12 Tag HTML

Certains tag HTML sont encore fonctionnels:
e pour du texte en gras

e <u> ou <u:#AAAAAA> ou <u: [[color|colorName]]> pour souligner

<i> pour de l'italique

§

Guide de référence du langage PlantUML (1.2025.0)

<s> ou <s:#AAAAAA> ou <s: [[color|colorName]]> pour barrer du texte

<w> ou <w:#AAAAAA> ou <w: [[color|colorName]]> pour souligner en vague

481 / 580

22.12 Tag HTML

22

CREOLE

e <color:#AAAAAA> ou <color: [[color|colorName]]> pour la couleur

e <back:#AAAAAA> ou <back: [[color|colorName]]> pour la couleur de fond

e <size:nn> pour changer la taille des caractéres
e <img:file> : le fichier doit étre accessible sur le systeme de fichier
e <img:http://plantuml.com/logo3.png> : 'URL doit étre accessible

@startuml

:* You can change <color:red>text color</color>

* You can change <back:cadetblue>background color</back>

* You can change <size:18>size</size>

* You use <u>legacy</u> HTML <i>tag</i>

* You use <u:red>color</u> <s:green>in HTML</s> <w:#0000FF>tag</w>
* Use image : <img:http://plantuml.com/logo3.png>

@enduml

* You can change text color
* You can change

* You can change size
* You use |legacy HTML tag
* You use color HFMEtag.

* Use image : (Cannot decode: http://plantuml.com/loge3.png)

22.12.1 Common HTML element

@startuml
hide footbox
note over Source
<code>
This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>
-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>Orange background</back>
This is <size:20>big</size>
</code>
end note
/note over Output
This is bold
This is <i>italics</i>
This is <font:monospaced>monospaced
This is <s>stroked</s>
This is <u>underlined</u>
This is <w>waved</w>
This is <s:green>stroked</s>
This is <u:red>underlined</u>
This is <w:#0000FF>waved</w>

§

Guide de référence du langage PlantUML (1.2025.0)

482 / 530

22.13 Openlconic 22 CREOLE

—-- other examples --
This is <color:blue>Blue</color>
This is <back:orange>0Orange background</back>
This is <size:20>big</size>
end note
@enduml

‘ Source | Output

This is <brbold & This is bold &
This is <ir»italics</i> This is italics
This is <font:monospaced:monospaced This is monospaced
This is This is stroked
This is This is underlined
This is This is waved
This is This is streled
This is This is underlined
This is <w:40000FF>waved</w> This is waved
-- other examples -- L other examples
This is <color:blue>Blue</color> Th!s !5 Blue
This is <back:crange>0range background</back> This is Orange background
This is <size:20>big</size> This is blg
22.12.2 Subscript and Superscript element [sub, sup]
@startuml
:<code>
This is the "caffeine" molecule: C₈H₁₀N₄0₂
</code>

This is the "caffeine" molecule: C₈H₁₀N₄0₂
<code>

This is the Pythagorean theorem: a² + b² = c²

</code>

This is the Pythagorean theorem: a² + b² = c²;
@enduml

|/ B B H\
This is the "caffeine" molecule: C<subz8</subzH<subs>l0</subsN<subrd< fsub>0₂

This is the "caffeine” molecule: CyH, N0,

This is the Pythagorean thecrem: a² + b² = c<dsup>2</sup>

This is the Pythagorean theorem: at+bi=c?

., A

22.13 Openlconic

Openlconic est un jeu d’icones open-source tres agréable. Ces icones sont intégrées dans l'analyseur
créole, vous pouvez donc les utiliser directement.

Utilisez la syntaxe suivante <¢ICON_NAME>

@startuml
title: <size:20><&heart>Use of OpenlIconic<&heart></size>
class Wifi
note left
Click on <&wifi>
end note
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 483 / 580

22.14 Annexe : Exemples de 7 liste créole

7!

" sur tous les diagrammes

22 CREOLE

vUse of OpenlconicY

Clickon 7 E_—- =

@wn

La liste complete est disponible sur le site web d’Openlconic, ou vous pouvez utiliser la commande spéciale
suivante pour les lister

O@startuml
listopeniconic
Q@enduml

List Open lconic
Credit to

hitps://useiconic.comiopen

= account-login

- account-logout
% gction-redo

r action-undo
align-center
lign-left

= align-right

& aperture

+ arrow-bottom

© arrow-circle-bottom
© arrow-circle-left
@ arrow-circle-right
Q@ arrow-circle-top
+ arrow-left

=+ arrow-right

4 arrow-thick-bottom
+ arrow-thick-left
= arrow-thick-right
T arrow-thick-top

t arrow-top

A audio-spectrum
v gudio

t badge

@ ban

bt bar-chart

basket

o battery-empty

= battery-full

& beaker

22.14 Annexe : Exemples de ” liste créole

22.14.1 Activité

@startuml
start

rkxtest list 1*x*

* Bullet list
* Second item
** Sub item

***% Sub sub item

* Third item

**test list 2%x*
Numbered list

Second item
Sub item

A bell

£ hluetooth

B bold

* balt

M book

R bookmark
M box

& hriefcase

£ british-pound
B browser

brush

bug

* bullhorn

& calculator

W calendar

@ camera-sir
- caret-bottom
1 caret-left

b caret-right
a caret-top

= cart

 chat

« check

* chewvron-bottom
€ chewvron-left
* chevron-right
chevran-top
@ circle-check
D circle-x

W cliphoard

@ clock

% cloud-download

cloud-upload

Another sub item

Third item;
stop

§

& cloud

a cloudy

i code

@ cog

T collapse-down
I collapse-left
kI collapse-right
= collapse-up

® command

W comment-square
& compass

© contrast

= copywriting

= credit-card

® crop

@ dashboard

4 data-transfer-download

* data-transfer-upload
@ delete

& dial

B document

s dollar

" double-quote-sans-left

44 double-quote-sans-right

& double-quote-serif-left

% double-quote-serif-right

& droplet

A giect

+ elevator

= gllipses

= envelope-closed
@ envelope-open
£ euro

= excerpt

= expand-down
kI expand-left

14 expand-right
= expand-up

2 external-link
@ eye

& eyedropper

k file

& fire

™ flag

¥ flash

& folder

¥ fork

*» fullscreen-enter
* fullscreen-exit

rid-four-up
grid-three-up
= grid-two-up
= hard-drive

H header

N headphones
w heart

® home

& image

0 inbox

== infinity

{ info

I italic

= justify-center
= justify-left

2

Guide de référence du langage PlantUML (1.2025.0)

sur tous

= justify-right

key

4 |aptop

" layers

lightbulb

i? link-broken

& link-intact

#2 list-rich

= list

« location

& |ock-locked

& lock-unlocked

1 |oop-circular

© loop-square

= loop

Q magnifying-glass
@ map-marker

E map

n media-pause

» media-play

* media-record

+ media-skip-backward
» media-skip-forward
W media-step-backward
H media-step-forward
® media-stop

® medical-cross

= menu

¢ microphone

= minus

2 monitor

& moon

+ move

A musical-note
& paperclip
pencil

people

person

phone
pie-chart

pin

play-circle
plus
power-standby
print

project

pulse
puzzle-piece
question-mark
rain

random
reload
resize-both
resize-height
resize-width
ras-alt

rss

script
share-boxed
share

shield

signal
signpost

E sorl-ascending
F sort-descending
B spreadsheet

EMC 4O Ol N

T2 &t KD oF T

+ =93

les diagrammes

484 / 580

* slar

* sun

O tablet

% tag

» tags

@ target

& task

& terminal

T text

" thumb-down

b thumb-up

& timer

= transfer

@ trash

U underline

U vertical-align-bott:
& vertical-align-cent
i vertical-align-top
= video

© volume-high

4 volume-low

A volume-off

A warning

T wifi

wrench

X x

¥ yen

@ zoom-in

€ zoom-out

22.14 Annexe : Exemples de 7 liste créole

”

sur tous les diagrammes

22 CREOLE

@enduml

22.14.2 Classe
TODO: FIXME
o Sous-€lément
o Sous-élément
TODO: FIXME

@startuml

class a {

**xtest list 1x*x*
* Bullet list

* Second item

*x Sub item

**x* Sub sub item
* Third item
**test list 2%
Numbered list
Second item

Sub item

Another sub item
Third item

}
a-—-b>b
@enduml

§

-

* Third item

_?

test list 1

* Bullet list

* Second item
" Sub item

13

= Sub sub item

test list 2
1. Mumbered list
2. Second item

3. Third item

1. Sub item
2. Another sub item

oy

|

Guide de référence du langage PlantUML (1.2025.0)

485 / 580

22.14 Annexe : Exemples de 7 liste créole

” sur tous les diagrammes

22 CREOLE

©EI

test list 1
» Bullet list
Second item

** Sub item

*** Sub sub item
® Third item

test list 2
Mumbered list
Second item

Sub item

Ancther sub item
Third item

©»

22.14.3 Composant, Déploiement, Cas d’utilisation

@startuml

node n [

**xtest list 1x*x
* Bullet list

* Second item

*x Sub item

**x* Sub sub item
* Third item
**test list 2%
Numbered list
Second item

Sub item

Another sub item
Third item

]

file f as "
**xtest list 1*x
* Bullet list

* Second item

*x Sub item

**x* Sub sub item
* Third item
**test list 2%
Numbered list
Second item

Sub item

Another sub item
Third item

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

486 / 580

22.14 Annexe : Exemples de 7 liste créole

”

sur tous les diagrammes

22 CREOLE

test list 1
s Bullet list
= Second item

= Sub item
» Sub sub item

* Third item

test list 1
+ Bullet list
+ Second item
= Sub item
= Sub sub item
* Third item

test list 2
1. Numbered list
2. Second item

1. Sub item
2. Another sub item

3. Third item

test list 2

1. Numbered list

2. Second item
1. Sub item

2. Another sub item

3. Third item

TODO: DONE [Corrigé dans la V1.2020.18)

22.14.4 Planification de projet Gantt

N/A

22.14.5 Object

TODO: FIXME
o Sous-élément
o Sous-élément

TODO: FIXME

@startuml

object user {
**test list 1%
* Bullet list

* Second item

**x Sub item

**x* Sub sub item
* Third item
xtest list 2%x
Numbered list
Second item

Sub item

Another sub item
Third item

}

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

487 / 580

22.14 Annexe : Exemples de 7 liste créole

”

sur tous les diagrammes

22 CREOLE

user

test list 1

Bullet list
Second item

** Sub item

*** Sub sub item
Third item

< Numbered list
<> Second item

< Third item

test list 2

Sub item
#i# Another sub item

22.14.6 MindMap

O@startmindmap

* root

** dl

*x:kxtest list 1*x*
* Bullet list

* Second item

**x Sub item

*** Sub sub item

* Third item
xtest list 2%x

Numbered list

Second item

Sub item

Another sub item
Third item;

@endmindmap

22.14.7 Réseau (nwdiag)
N/A

§

-
test list 1
= Bullet list
= Second item
= Sub item
= Sub sub item
« Third item

test list 2
1. Numbered list
2. Second itern
1. Sub itern
2. Another sub item
3. Third item
|

_/

Guide de référence du langage PlantUML (1.2025.0)

488 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles

J;

" sur tous les diagrammes

22 CREOLE

22.14.8 Note

@startuml

note as n

*xtest list 1*x*
* Bullet list

* Second item

**x Sub item

**%x Sub sub item
* Third item
xtest list 2%x
Numbered list
Second item

Sub item

Another sub item
Third item

end note

@enduml

22.14.9 Sequence

test list 1
* Bullet list
* Second item
" Sub item
= Sub sub item
* Third item

test list 2
1. Numbered list
2. Second item
1. Sub itemn
2. Another sub item
3. Third item

N/A (ou sur note ou commandes communes)

22.14.10 State

N/A (ou sur note ou commandes communes)

22.15 Annexe : Exemples de ” lignes horizontales créoles

grammes

22.15.1 Activité

TODO: FIXME ligne forte ____ TODO: FIXME

@startuml
start
:You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..

Or dotted title
//and title... //
==Title==

§

Guide de référence du langage PlantUML (1.2025.0)

sur tous les dia-

489 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles

”

sur tous les diagrammes

22 CREOLE

Or double-line title
-—Another title--

Or single-line title
Enjoy!;

stop

@enduml

22.15.2 Classe

@startuml

class a {
You can have horizontal line

Or double line

Or strong line

Or dotted line

..My title..

Or dotted title
//and title... //
==Title==

Or double-line title
——Another title--

Or single-line title
Enjoy!

}

a-->b

@enduml

§

?

You can have horizontal line

-

Or double line

Or strang line

Or dotted line

My title
Or dotted title

Titles

Or double-line title
——Another title———
Or single-line title

®

Guide de référence du langage PlantUML (1.2025.0)

490 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles

”

sur tous les diagrammes

22 CREOLE

@ a

You can have horizontal line

Or double line

Or strong line

Or dotted line

My title
Or dotted title
and titfe...

Title
Or double-line title
Another title———
Or single-line title

Enjoy!

®©»

22.15.3 Composant, déploiement, cas d’utilisation

@startuml
node n [
You can have horizontal line

Or double line

Or strong line

Or dotted limne
..My title..
//and title... //
==Title==
—-—Another title--
Enjoy!

]

file £ as "
You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title-—-
Enjoy!

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

491 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles

J;

" sur tous les diagrammes

22 CREOLE

You can have horizontal line

You can have horizontal line

I

Or double line

Or double line

Or strong line

Or strong line

Or dotted line Or dotted line
My title, My title
and title... and title...
Title} Title
Another tite———
Enjoy! Enjoy!

22.15.4 Planification de projet Gantt
N/A

22.15.5 Objet

@startuml
object user {
You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title-—-
Enjoy!

}

@enduml

user

You can have horizontal line

Or double line

Or strong line

Or dotted line

My title
and titfe...
Title

Enjoy!

Another title———

TODO: DONE [Corrected on V1.2020.18]

22.15.6 MindMap

TODO: FIXME TODO: FIXME

strong line

O@startmindmap

* root

§

Guide de référence du langage PlantUML (1.2025.0)

492 / 580

22.15 Annexe : Exemples de ” lignes horizontales créoles

J;

" sur tous les diagrammes

22 CREOLE

**x dl

**:You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..
//and title... //
==Title==
--Another title--
Enjoy!;

@endmindmap

22.15.7 Réseau (nwdiag)
N/A

22.15.8 Note

@startuml
note as n
You can have horizontal line

Or double line

Or strong line

Or dotted line
..My title..
//and title... //
==Title==
——Another title--
Enjoy!

end note

Q@enduml

§

~

You can have horizontal line

Or double line

Or strong line

Or dotted line
------------------------- L
and title...
Titl

Another title————

Enjoy!
% 1oy A

Guide de référence du langage PlantUML (1.2025.0)

493 / 580

22,16 Equivalence de style (entre le créole et le HTML) 22 CREOLE

You can have horizontal line D

Or double line

Or strong line

Or dotted line

My title
and title...

Titl

Another title——
Enjoy!

22.15.9 Sequence

N/A (ou sur note ou commandes communes)

22.15.10 State

N/A (ou sur note ou commandes communes)

22.16 Equivalence de style (entre le créole et le HTML)

Style Créole Legacy HTML comme
gras C’est **bold** C’est bold
italique C’est //italics// Clest <i>italics</i>
monospaced | C’est ""monospaced"" | C’est <font:monospaced>monospaced
stroked C’est ——stroked-- C’est <s>stroked</s>
souligné C’est __underlined__ | C’est <u>underlined</u>
agité Clest ~~~ Cest <w>waved</w>
@startmindmap

* Style equiv
*x: xkCreole*xx*
<#silver>|= c
| \n This is
| \n This is
| \n This is
| \n This is
| \n This is
| \n This is
**:Legacy
<#silver>|= c
| \n This is
| \n This is
| \n This is
| \n This is
| \n This is
| \n This is
And color as
<#silver>|= c
| \n This is
| \n This is
| \n This is
@endmindmap

&
ﬁ Guide de

alent\n(between Creole and HTML)

ode|= output|

"Mexxbold**""\n | \n This is **boldx*x* |

""~//italics//""\n | \n This is //italics// |

""~""monospaced~"" ""\n | \n This is ""monospaced"" |
""~-—stroked--""\n | \n This is --stroked-- |

""~ underlined__""\n | \n This is __underlined__ |

" <U+007E><U+007E>waved<U+007E><U+007E>""\n | \n This is ~~waved~~ |;
HTML 1like

ode|= output|

"M~bold""\n | \n This is bold |

""~<i>italics</i>""\n | \n This is <i>italics</i> |
""~<font:monospaced>monospaced""\n | \n This is <font:monospaced>monospaced</fon
""~<s>stroked</s>""\n | \n This is <s>stroked</s> |

""~<u>underlined</u>""\n | \n This is <u>underlined</u> |

"re<w>waved</w>""\n | \n This is <w>waved</w> |

a bonus...

ode|= output|

"M~<g:""<color:green>""green""</color>"">stroked</s>""\n | \n This is <s:green>stroked
"Me<u:""<color:red>""red""</color>"">underlined</u>""\n | \n This is <u:red>underlined<
"<y ""<color: #0000FF>""#0000FF""</color>"">waved</w>""\n | \n This is <w:#0000FF>wave

référence du langage PlantUML (1.2025.0) 494 / 580

22,16 Equivalence de style (entre le créole et le HTML) 22 CREOLE

' N
Creole
code output
This is **kbold** This is bold
Thisis //italics// This is italics

| |This is ""monospaced""” |This is monospaced

This is ——stroked-- This is streked

Thisis __underlined__ |This is underlined

This is ~~waved~~ This is waved
Ly
~
Legacy HTML like
I code output
|
Style equivalent / This is bo1d This is bold
(between Creole and HTML) | |
|
Thisis <i=italics</i= This is italics

This is monospaced This is monospaced

This is <s>stroked</s> This is streked

II

‘| |Thisis <u>underlined</u> This is undedined
This is <w>waved</w> This is waved

And color as a bonus...
code output

This is <s :green>stroked< /s> | This is streked

This is <u:red>underlined</u> Thisis underdined

This is <w: #0000FF »>waved< /w> |Thisis waved

L S

&« Guide de référence du langage PlantUML (1.2025.0) 495 / 580

23 DEFINING AND USING SPRITES

23 Defining and using sprites

A Sprite is a small graphic element that can be used in diagrams.

In PlantUML, sprites are monochrome and can have either 4, 8 or 16 gray level.
To define a sprite, you have to use a hexadecimal digit between 0 and F per pixel.
Then you can use the sprite using <$XXX> where XXX is the name of the sprite.

O@startuml

sprite $fool {
FFFFFFFFFFFEFEFEE
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFEFEE

}
Alice -> Bob : Testing <$fool>
@enduml

E =

I Testing['
—_—— e

AHGE‘ |Bob
You can scale the sprite.

O@startuml

sprite $fool {
FFFFFFFFFFFFEEFFE
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFEFFFE

3
Alice -> Bob : Testing <$fool{scale=3}>
@enduml

23.1 Inline SVG sprite

You can also use inlined SVG for sprites.

§

Guide de référence du langage PlantUML (1.2025.0) 496 / 580

23.1 Inline SVG sprite 23 DEFINING AND USING SPRITES

Only a tiny subset of SVG directives is possible, so you probably have to compress existing SVG files
using https://vecta.io/nano. [Ref. GH-1066]

O@startuml

sprite fool <svg width="8" height="8" viewBox="0 0 8 8">

<path d="M1 01-1 1 1.5 1.5-1.5 1.5h4v-41-1.5 1.5-1.5-1.5zm3 4v411.5-1.5 1.5 1.5 1-1-1.5-1.5 1.5-1.5h
</svg>

Alice->Bob : <$fool*3>
Q@enduml

e o]
L

_
‘AHCE‘ ‘Bob|
Another example:

@startuml

sprite fool <svg viewBox="0 0 36 36">

<path fill="#77B255" d="M36 32c0 2.209-1.791 4-4 4H4c-2.209 0-4-1.791-
<path fill="#FFF" d="M21.529 18.00618.238-8.238c.977-.976.977-2.559 0-
</svg>

4-4V4c0-2.209 1.791-4 4-4h28c2
3.535-.977-.977-2.5569-.977-3.5.

Alice->Bob : <$fool>

@enduml

B =

=

‘AHGE‘ ‘ Bob|

You can also use rotation:

@startuml

sprite react <svg viewBox="0 0 230 230">

<circle cx="115" cy="115" r="20.5" fill="#61dafb"/>

<ellipse rx="110" ry="42" cx="1156" cy="115" stroke="#61dafb" stroke-width="10" fill="none"/>
<ellipse rx="110" ry="42" cx="115" cy="115" stroke="#61dafb" stroke-width="10" fill="none" transfor:
<ellipse rx="110" ry="42" cx="1156" cy="115" stroke="#61dafb" stroke-width="10" fill="none" transfom
</svg>

rectangle <$react{scale=0.2}>
@enduml

And you can use color:

@startuml
sprite react <svg viewBox="0 0 230 230">
<circle cx="115" cy="102" r="20.5" fill="#61dafb"/>

§

Guide de référence du langage PlantUML (1.2025.0) 497 / 580

23.2 Changing colors 23 DEFINING AND USING SPRITES

<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#ff0000" stroke-width="10" fill="none"/>
<g transform="rotate(100 115 102)">

<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#00ff00" stroke-width="10" fill="none"/>
</g>

<g transform="rotate(-100 115 102)">

<ellipse rx="110" ry="42" cx="115" cy="102" stroke="#0000ff" stroke-width="10" fill="none"/>
</g>

</svg>

rectangle <$react{scale=1}>
@enduml

23.2 Changing colors
Although sprites are monochrome, it’s possible to change their color.

@startuml

sprite $fool {
FFFFFFFFFFFFEEFE
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
F0123456789ABCF
FFFFFFFFFFFFEFFE

}

Alice -> Bob : Testing <$fool,scale=3.4,color=orange>

@enduml
AHce‘ | Bob

Testing

S

23.3 Encoding Sprite
To encode sprite, you can use the command line like:

java -jar plantuml.jar -encodesprite 16z foo.png

§

Guide de référence du langage PlantUML (1.2025.0) 498 / 580

23.4 Importing Sprite 23 DEFINING AND USING SPRITES

where foo.png is the image file you want to use (it will be converted to gray automatically).
After —encodesprite, you have to specify a format: 4, 8, 16, 4z, 8z or 16z.

The number indicates the gray level and the optional z is used to enable compression in sprite definition.

23.4 Importing Sprite
You can also launch the GUI to generate a sprite from an existing image.
Click in the menubar then on File/Open Sprite Window.

After copying an image into you clipboard, several possible definitions of the corresponding sprite will be
displayed : you will just have to pickup the one you want.

23.5 Examples

@startuml

sprite $printer [15x15/8z] NOtH3WOW208HxFz_kMAhj71HWpalXC716sz0Pq4MVPEWEBHIuxP3L6kbTcizR8tAhzaqFvXwv]
start

:click on <$printer> to print the page;

@enduml

?

i %
| click on (=) to print the page |

- -

@startuml

sprite $bug [15x15/16z] PKzR2iOm2BFMilb5p__FEjQEqB1z27aeqCqixa8S40T7C53cKpsHpaYPDJY_12MHM-BLRyywPhrr
sprite $printer [15x15/8z] NOtH3WOW208HxFz_kMAhj71HWpalXC716sz0Pq4MVPEWfBHIuxP3L6kbTcizR8tAhzagFvXw
sprite $disk {

444445566677881

436000000009991

43600000000ACA1

53700000001A7A1

53700000012B8A1

53800000123B8A1

63800001233C9A1

634999AABBC99B1

744566778899AB1

TA56AAAAAQ9AAB1

8566AFC228AABB1

8567AC8118BBBB1

867BD4433BBBBB1

39AAAAABBBBBBC1

title Use of sprites (<$printer>, <$bug>...)
class Example {

Can have some bug : <$bug>

Click on <$disk> to save

}

note left : The printer <$printer> is available

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 499 / 580

23.6 StdLib 23 DEFINING AND USING SPRITES

Use of sprites (=, :ﬁ?}

© Example

The printer (2] is available BF_—- =] Can have some bug ;q‘g‘;
Click on = to save

23.6 StdLib

The PlantUML StdLib includes a number of ready icons in various IT areas such as architecture, cloud
services, logos etc. It including AWS, Azure, Kubernetes, C4, product Logos and many others. To explore
these libraries:

¢ Browse the Github folders of PlantUML StdLib

e Browse the source repos of StdLib collections that interest you. Eg if you are interested in logos
you can find that it came from gilbarbara-plantuml-sprites, and quickly find its

sprites-list. (The next section shows how to list selected sprites but unfortunately that’s in grayscale
whereas this custom listing is in color.)

o Study the in-depth Hitchhiker’ s Guide to PlantUML, eg sections Standard Library Sprites and
PlantUML Stdlib Overview

23.7 Listing Sprites
You can use the listsprites command to show available sprites:
e Used on its own, it just shows ArchiMate sprites

e If you include some sprite libraries in your diagram, the command shows all these sprites, as
explained in View all the icons with listsprites.

(Example from Hitchhikers Guide to PlantUML)

@startuml

!define osaPuml https://raw.githubusercontent.com/Crashedmind/PlantUML-opensecurityarchitecture2-ico:
linclude osaPuml/Common.puml

linclude osaPuml/User/all.puml

linclude osaPuml/Hardware/all.puml

linclude osaPuml/Misc/all.puml

linclude osaPuml/Server/all.puml

linclude osaPuml/Site/all.puml

listsprites

' From The Hitchhiker’ s Guide to PlantUML
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 500 / 580

23.7 Listing Sprites 23 DEFINING AND USING SPRITES

. s a5 @8

osa_arrow_green_left osa_amow_yellow_right 0sa_awareness osa_camera_web osa_cloud osa_contract osa_database osa_desktop

=, s = i & =

osa_desktop_imac osa_device_music osa_device_scanner osa_device_usb osa_device usb_wifi osa_device_wireless_router osa_disposal
osa_drive_harddisk osa_drive_optical osa_firewall osa_home osa_hub osa_iPhone osa_ics_drive osa_ics_ple osa_ics_thermometer
~ A
b il C = 2 =2
\) — I

osa_id_card 0sa_image_generic osa_laptop osa_lifecycle osa_lightning osa_media_flash osa_media_optical osa_media_tape osa_mobile_pda

%
f o
I

osa_padlock osa_printer osa_server osa_server_application osa_server_database osa_server_directory osa_server_distribution osa_server_file

=
==
o

= =

| =

ol + =

1111 ill
osa_server_gateway osa_server_identity osa_server_mail osa_server_media osa_server_monitor osa_server_proxy osa_server_terminal

B & o b &

osa_server_web osa_site_branch osa_site_factory osa_site_head_office osa_site_neighbourhood osa_user_audit osa_user_black_hat

& o & & & 3

osa_user_blue osa_user_blue_security_specialist osa_user_blue_sysadmin osa_user_blue_tester osa_user_blue_tie 0sa_user_green osa_user_green_architect

= - 2 3

osa_user_green_business_manager osa_user_green_developer osa_user green_operations ~ ©0sa_user_green_project_manager 0sa_user_green_service_manager

& @ o & =20 7

osa_user_green_warning osa_user_large_group osa_user_white_hat osa_users_blue_green osa_vpn osa_warning osa_wireless_network

Most collections have files called all that allow you to see a whole sub-collection at once. Else you
need to find the sprites that interest you and include them one by one. Unfortunately, the version of
a collection included in StdLib often does not have such all files, so as you see above we include the
collection from github, not from StdLib.

All sprites are in grayscale, but most collections define specific macros that include appropriate (vendor-
specific) colors.

3

Guide de référence du langage PlantUML (1.2025.0) 501 / 580

24 SKINPARAM COMMAND

24 Skinparam command

You can change colors and font of the drawing using the skinparam command.
Example:
skinparam backgroundColor transparent

Important: skinparam is being phased out, see comments in issue#1464. It is still supported for simple
cases (and for backward compatibility), but users should migrate to style, which supports more complex
cases.

24.1 Usage

You can use this command :
e In the diagram definition, like any other commands,
e In an included file,

e In a configuration file, provided in the command line or the ANT task.

24.2 Nested
To avoid repetition, it is possible to nest definition. So the following definition :

skinparam xxxxParaml valuel
skinparam xxxxParam2 value2
skinparam xxxxParam3 value3
skinparam xxxxParam4 value4

is strictly equivalent to:

skinparam xxxx {
Paraml valuel
Param2 value2
Param3 value3
Param4 value4

24.3 Black and White

You can force the use of a black&white output using skinparam monochrome true command.

O@startuml
skinparam monochrome true

actor User

participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

«
&« Guide de référence du langage PlantUML (1.2025.0) 502 / 580

24.4 Shadowing

24 SKINPARAM COMMAND

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml

u

24.4 Shadowing

\\
ser
]

| First Class |

| Second Class ‘ ‘ Last Class |

| DoWork_ !

Create Request

v

. Request Created

DoWorl

- WorkDone Ly

F

First Class |

-

AN

| Second Class ‘ ‘ Last Class |

You can disable the shadowing using the skinparam shadowing false command.

@startuml

left to right direction

skinparam shadowing<<no_shadow>> false

skinparam shadowing<<with_shadow>> true

actor User

(Glowing use case) <<with_shadow>> as guc
(Flat use case) <<no_shadow>> as fuc

User -- guc
User —-- fuc
@enduml

24.5 Reverse colors

¢ «no_shadows
‘. Flat use case

/7 awith_shadow»
. Glowing use case

-~

J

You can force the use of a black&white output using skinparam monochrome reverse command. This
can be useful for black background environment.

§

Guide de référence du langage PlantUML (1.2025.0)

503 / 580

24.6 Colors 24 SKINPARAM COMMAND

O@startuml
skinparam monochrome reverse

actor User

participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml
]
o
24.6 Colors
You can use either standard color name or RGB code.
@startuml
colors
@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 504 / 580

24.7 Font color, name and size 24 SKINPARAM COMMAND

APPLICATION Crimson DeepPink LightYellow RoyalBlue

AliceBlue Ivory OldLace STRATEGY Violet
AntiqueWhite DarkBlue DimGray Khaki Olive SaddleBrown Wheat
Aqua DarkCyan DimGrey Lavender Linen OliveDrab White
Aquamarine DodgerBlue LavenderBlush MOTIVATION SandyBrown WhiteSmoke
Azure FireBrick LawnGreen Magenta OrangeRed SeaGreen Yellow
BUSINESS DarkGreen FloralWhite LemonChiffon Maroon
Beige ForestGreen LightBlue PHYSICAL Sienna

Bisque Fuchsia MediumBlue PaleGoldenRod Silver

PaleGreen

DarkMagenta Gainsboro LightCyan

BlanchedAlmond DarkOliveGreen GhostWhite LightGoldenRodYellow PaleTurquoise SlateBlue

Blue DarkOrchid Gold LightGray SlateGray

BlueViolet DarkRed LightGreen MediumSlateBlue PapayaWhip SlateGrey

Brown LightGrey
BurlyWood LightPink
DarkSlateBlue GreenYellow

PeachPuff

LightSalmon MediumVioletRed SteelBlue
DarkSlateGray MidnightBlue Plum TECHNOLOGY

Chocolate DarkSlateGrey HoneyDew LightSkyBlue MintCream PowderBlue Tan

MistyRose
DarkViolet IMPLEMENTATION Moccasin
Cornsilk IndianRed LightSteelBlue NavajoWhite

transparent can only be used for background of the image.

24.7 Font color, name and size
You can change the font for the drawing using xxxFontColor, xxxFontSize and xxxFontName parameters.
Example:

skinparam classFontColor red
skinparam classFontSize 10
skinparam classFontName Aapex

You can also change the default font for all fonts using skinparam defaultFontName.
Example:
skinparam defaultFontName Aapex

Please note the fontname is highly system dependent, so do not over use it, if you look for portability.
Helvetica and Courier should be available on all systems.

A lot of parameters are available. You can list them using the following command:

java -jar plantuml.jar -language

24.8 Text Alignment

Text alignment can be set to left, right or center in skinparam sequenceMessageAlign. You can
also use direction or reverseDirection values to align text depending on arrow direction.

Param name Default value | Comment

sequenceMessageAlign left Used for messages in sequence diagrams

sequenceReferenceAlign | center Used for ref over in sequence diagrams
@startuml

skinparam sequenceMessageAlign center
Alice -> Bob : Hi

Bob -> Alice : This is very long
@enduml

3

Guide de référence du langage PlantUML (1.2025.0) 505 / 580

24.9 Examples

24 SKINPARAM COMMAND

! This is very long
- =

BE &=

@startuml

skinparam sequenceMessageAlign right
Alice -> Bob : Hi

Bob -> Alice : This is very long
@enduml

! Thisis very long !
-

BE &=

@startuml

skinparam sequenceMessageAlign direction
Alice -> Bob : Hi

Bob -> Alice: Hi

@enduml

e]

LHi

L Hi

I 1
AHCE‘ Bob|

24.9 Examples

@startuml
skinparam backgroundColor #EEEBDC
skinparam handwritten true

skinparam sequence {

ArrowColor DeepSkyBlue
ActorBorderColor DeepSkyBlue
LifeLineBorderColor blue
LifelLineBackgroundColor #A9DCDF

ParticipantBorderColor DeepSkyBlue
ParticipantBackgroundColor DodgerBlue
ParticipantFontName Impact
ParticipantFontSize 17
ParticipantFontColor #A9DCDF

ActorBackgroundColor aqua
ActorFontColor DeepSkyBlue
ActorFontSize 17
ActorFontName Aapex

§

Guide de référence du langage PlantUML (1.2025.0)

506 / 580

24.9 Examples 24 SKINPARAM COMMAND

actor User

participant "First Class" as A
participant "Second Class" as B
participant "Last Class" as C

User -> A: DoWork
activate A

A -> B: Create Request
activate B

B -> C: DoWork
activate C

C --> B: WorkDone
destroy C

B --> A: Request Created
deactivate B

A --> User: Done
deactivate A

@enduml
User Second Class m
i S | :
| | Create Request | !
1]
| Dowork !
1
:. | WorkDone s .
! Request Created .
I| * _____ sesiammm-. . ; :
L-{ Done . :. :.
@startuml

skinparam handwritten true

skinparam actor {
BorderColor black
FontName Courier
BackgroundColor<< Human >> Gold
}

skinparam usecase {
BackgroundColor DarkSeaGreen

BorderColor DarkSlateGray

BackgroundColor<< Main >> YellowGreen

3

Guide de référence du langage PlantUML (1.2025.0) 507 / 580

24.9 Examples 24 SKINPARAM COMMAND

BorderColor<< Main >> YellowGreen

ArrowColor 0live

3

User << Human >>

:Main Database: as MySql << Application >>
(Start) << One Shot >>

(Use the application) as (Use) << Main >>

User -> (Start)
User --> (Use)

MySql --> (Use)

@enduml
«Human» «Applications

a0 P — C_fl

:?i' ~,/ «One Shot» —-

A A

User Main Database

///’
"y "
whMair»
Use the application

@startuml

skinparam roundcorner 20
skinparam class {
BackgroundColor PaleGreen
ArrowColor SeaGreen
BorderColor SpringGreen

X

skinparam stereotypeCBackgroundColor YellowGreen
Class01 "1" *--— "many" Class02 : contains

Class03 o-- Class04 : aggregation

@enduml
(©)class01 (C)Class03
1
contains aggregation
many
(©)class2 (C)Class04
O@startuml

skinparam interface {
backgroundColor RosyBrown
borderColor orange

3

skinparam component {
FontSize 13

§

Guide de référence du langage PlantUML (1.2025.0)

508 / 580

24.9 Examples

24 SKINPARAM COMMAND

BackgroundColor<<Apache>> LightCoral
BorderColor<<Apache>> #FF6655
FontName Courier
BorderColor black
BackgroundColor gold
ArrowFontName Impact
ArrowColor #FF6655
ArrowFontColor #777777
¥

() "Data Access" as DA
[Web Server] << Apache >>

DA - [First Component]

[First Component] ..> () HTTP : use
HTTP - [Web Server]

@enduml

| First Component

Data Access

use

HTTP

@startuml

[AA] <<static lib>>
[BB] <<shared lib>>
[CC] <<static 1lib>>

node nodel
node node2 <<shared node>>
database Production

skinparam component {
backgroundColor<<static 1ib>> DarkKhaki
backgroundColor<<shared 1ib>> Green

}

skinparam node {

borderColor Green

backgroundColor Yellow
backgroundColor<<shared node>> Magenta
}

skinparam databaseBackgroundColor Aqua
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

509 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

g1 g1
wstatic lib»
CcC

wstatic lib»
AA

24.10 List of all skinparam parameters

You can use -language on the command line or generate a "diagram” with a list of all the skinparam
parameters using :

e help skinparams

e skinparameters

24.10.1 Command Line: -language command

Since the documentation is not always up to date, you can have the complete list of parameters using
this command:

java -jar plantuml.jar -language

24.10.2 Command: help skinparams

That will give you the following result, from this page (code of this command): CommandHelpSkin-
param.java

@startuml

help skinparams

Q@enduml
Welcome to PlantUML! {/‘
You can start with a simple UML Diagram like: |
Bocb->*Alice: Hello ' .
Or
class Example

You will find more information about PlantUML syntax on httpsiiplantuml. com

(Details by typing 1 icense keyword)

PlantUML 1.20

[From string (line 2)]

@startuml
skinparams

24.10.3 Command: skinparameters

@startuml
skinparameters
@enduml

&« Guide de référence du langage PlantUML (1.2025.0) 510 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

§

Guide de référence du langage PlantUML (1.2025.0) 511 / 580

24.10 List of all skinparam parameters

24 SKINPARAM COMMAND

ActivityBackgroundColor
ActivityBorderColor
ActivityBorderThickness
ActivityDiamondFontColor
ActivityDiamondFontName
ActivityDiamondFontSize
ActivityDiamondFontStyle
ActivityFontColor
ActivityFontName
ActivityFontSize
ActivityFontStyle
ActorBackgroundColor
ActorBorderColor
ActorFontColor
ActorFontMame
ActorFontSize
ActorFontStyle
ActorStereotypeFontColor
ActorSterectypeFontName
ActorStereotypeFontSize
ActorSterectypeFontStyle
AgentBorderT hickness
AgentFontColor
AgentFontName
AgentFontSize
AgentFontStyle
AgentStereotypeFontColor
AgentStereotypeF ontName
AgentStereotypeF ontSize
AgentStereotypeF ontStyle
ArchimateBorderThickness
ArchimateFontColor
ArchimateFontName
ArchimateFontSize
ArchimateFontStyle
ArchimateSterectypeFontColor
ArchimateStereotypeFontMName
ArchimateStereotypeFontSize
ArchimateStereotypeFontStyle
ArrowFontColor
ArrowFontName
ArrowFontSize

ArrowF ontStyle
ArrowHeadColor
ArrowLollipopColor
ArrowMessageAlignment
ArrowT hickness
ArtifactFontColor
ArtifactFontName
ArtifactFontSize
ArtifactFontStyle
ArtifactStereotypeFontColor
ArtifactStereotypeFontName
ArtifactStereotypeF ontSize
ArtifactStereotypeF ontStyle
BackgroundColor
BiddableBackgroundColor
BiddableBorderColor
BoundaryFontColor
BoundaryFontName
BoundaryFontSize
BoundaryF ontStyle
BoundaryStereotypeFontColor
BoundaryStereotypeFontName
BoundaryStereotypeFontSize
BoundaryStereotypeF ontStyle
BoxPadding

CaptionF ontCaolor

CaptionF ontMame

CaptionF ontSize

CaptionF ontStyle
CardBorderThickness
CardFontColor
CardFontMame
CardFontSize
CardFontStyle
CardStereotypeFontColor
CardStereotypeFontMName
CardStereotypeFontSize
CardStereotypeFontStyle
CircledCharacterFontColor
CircledCharacterFontName
CircledCharacterFontSize
CircledCharacterFontStyle
CircledCharacterRadius
ClassAttribute FontColor
ClassAttribute FontName
ClassAttributeFontSize
ClassAttribute FontStyle
ClassAttributelconSize
ClassBackgroundColor
ClassBorderColor
ClassBorderThickness
ClassFontColor
ClassFontMame
ClassFontSize

§

ClassFontStyle
ClassStereotypeFontColor
ClassStereotypeFontName
ClassStereotypeFontSize
ClassStereotypeFontStyle
CloudFontColor
CloudFontName
CloudFontSize

CloudF ontStyle
CloudStereotypeFontColor
CloudStereotypeFontName
CloudStereotypeF ontSize
CloudStereotypeF ontStyle
ColorArrowSeparationSpace
ComponentBorderThickness
ComponentFontCalor
ComponentFontName
ComponentFontSize
ComponentFontStyle
ComponentStereotypeFontColor
ComponentSterectypeFontName
ComponentStereotypeFontSize
ComponentStereotypeFontStyle
ComponentStyle
ConditionEndStyle
ConditionStyle
ContralFontCalor
ControlFortName
ControlFontSize
ControlFontStyle
ControlStereotypeFontColor
ControlStereotypeFontName
ControlStereotypeFontSize
ControlStereotypeFontStyle
DatabaseFontColor

DatabaseF ontName
DatabaseF ontSize

DatabaseF ontStyle
DatabaseStereotypeFontColor
DatabaseStereotypeFontName
DatabaseStereotypeFontSize
DatabaseStereotypeF ontStyle
DefaultFontColor
DefaultFontName
DefaultFontSize
DefaultFontStyle
DefaultMonospacedFontName
DefaultTextAlignment
DesignedBackgroundColor
DesignedBorderColor
DesignedDomainBorderThickness
DesignedDomainFontColor
DesignedDomainFontMame
DesignedDomainFontSize
DesignedDomainFontStyle

DesignedDomainStereotypeFontColor
DesignedDomainStereotypeFontName
DesignedDomainStereotypeFontSize
DesignedDomainSterectypeFontStyle

DiagramBorderColor
DiagramBorderT hickness
DomainBackgroundColor
DomainBorderColor
DomainBorderT hickness
DomainFontCalor
DomainFontName
DomainFontSize
DomainFontStyle
DomainStereotypeFontColor
DomainStereotypeFontName
DomainStereotypeF ontSize
DomainStereotypeF ontStyle
Dpi

EntityFontColor
EntityFontName
EntityFontSize
EntityFontStyle
EntityStereotypeFontColor
EntitySterectypeFontName
EntityStereotypeFontSize
EntityStereotypeFontStyle
FileFontCalar
FileFontName

FileFontSize

FileF ontStyle
FileStereotypeF ontColor
FileStereotypeF ontName
FileStereotypeF ontSize
FileStereotypeF ontStyle
FixCircleLabelOverlapping
FolderFantColor
FolderFontName
FolderFontSize
FolderFontStyle
FolderStereotypeFontColor
FolderStereatypeFontMame

FolderStereotypeF ontSize
FolderStereotypeF ontStyle
FooterFontCalor
FooterFontName
FooterFontSize
FooterFontStyle
FrameFontCaolor
FrameFontName
FrameFontSize
FrameFontStyle
FrameStereotypeFontColor
FrameStereotypeFontName
FrameStereotypeFontSize
FrameStereotypeFontStyle
GenericDisplay

Guillemet

Handwritten
HeaderFontColor
HeaderFontName
HeaderFontSize
HeaderFontStyle
HexagonBorderT hickness
HexagonFontColor
HexagonFontName
HexagonFontSize
HexagonFontStyle
HexagonStereotypeF ontColor
HexagonStereotypeFontName
HexagonStereotypeF ontSize
HexagonStereotypeF ontStyle
HyperlinkColor
HyperlinklUnderline
lconlEMandatoryColar
lconPackageBackgroundColor
lconPackageColor
lconPrivateBackgroundColor
leonPrivateColor
lconProtectedBackgroundColor
lconProtectedColor
lconPublicBackgroundColor
leonPublicColor
InterfaceFontColor
InterfaceFontName
InterfaceFontSize
InterfaceFontStyle
InterfaceSterectypeFontColor
InterfaceSterectype FontName
InterfaceStereotypeFontSize
InterfaceSterectypeFontStyle
LabelFortColor
LabelFortName
LabelFontSize
LabelFortStyle
LabelStereotypeFontColor
LabelStereotypeFontMame
LabelStereotypeFontSize
LabelStereotypeFontStyle
LegendBorderT hickness
LegendFontColor
LegendFontName
LegendFontSize
LegendFontStyle
LexicalBackgroundColor
LexicalBorderColor
LifelineStrategy

Linetype
MachineBackgroundColor
MachineBorderColor
MachineBorderThickness
MachineFontColor
MachineFontName
MachineFontSize
MachineFontStyle
MachineStereotypeFontColor
MachineStereotypeFontName
MachineStereotypeFontSize
MachineStereotypeFontStyle
MaxAsciMessageLength
MaxMessage Size
MinClassWidth

Monochrome

NodeFontCalor

Node FontName
NodeFontSize

Node FontStyle

Node SterectypeFontCaolor
Node StereotypeFontMame
Node SterectypeFontSize
Node SterectypeFontStyle
Modesep
NoteBackgroundColor
NoteBorderColor
NoteBorderThickness
NateFontCalar
NoteFortName

NoteFontSize

Guide de référence du langage PlantUML (1.2025.0)

NoteFontStyle

NoteShadowing
NoteTextAlignment
ObjectAttributeF ontColor
ObjectAttributeF ontName
ObjectAttributeF ontSize
ObjectAttributeF ontStyle
ObjectBorderThickness
ObjectFontColor
ObjectFontName
ObjectFontSize
ObjectFontStyle
ObjectStereotypeFontColor
ObjectStereotypeFontMame
ObjectSterectypeFontSize
ObjectStereotypeFontStyle
PackageBorderThickness
PackageFontColor
PackageFontName
PackageFontSize
PackageFontStyle
PackageStereotype FontColor
PackageStereotypeFontName
PackageStereotype FontSize
PackageStereotypeFontStyle
PackageStyle
PackageTitleAlignment
Padding

PageBorderColor
PageExternalColor
PageMargin
ParticipantFontColar
ParticipantFontName
ParticipantFontSize
ParticipantFontStyle
ParticipantPadding
ParticipantStereotypeFontColor
ParticipantStereotypeFontName
ParticipantStereotypeFontSize
ParticipantStereotypeFontStyle
PartitionBorderThickness
PartitionFontColor
PartitionFontName
PartitionFontSize
PartitionFontStyle
PathHoverColor
PersonBorderThickness
PersonFontCaolor
PersonFontMame
PersonFontSize
PersonFontStyle
PersonStereotypeFontColor
PersonStereatypeFontName
PersonStereotypeFontSize
PersonStereotypeFontStyle
QueueBorderThickness
QueueFontColor
QueueFontName
QueueFontSize
QueueFontStyle
QueueStereotypeFontCalor
QueueStereotypeFontName
QueueStereotypeFontSize
QueueStereotypeFontStyle
Ranksep
RectangleBorderThickness
RectangleFontColor
RectangleFontMName
RectangleFontSize
RectangleFontStyle
RectangleStereotypeFontColor
RectangleStereotypeFontName
RectangleStereotypeFontSize
RectangleStereotypeFontStyle
RequirementBackgroundColor
RequirementBorderColor
ReguirementBorderThickness
ReguirementFontColor
RequirementFontName
ReguirementFontSize
RequirementFontStyle
RequirementStereotypeFontColor
RequirementStereotypeFontName
RequirementStereotypeFontSize
RequirementStereatypeFontStyle
ResponseMessage BelowArrow
RoundCorner
SameClassWidth
SequenceActorBorderThickness
SeguenceArrowT hickness
SequenceBoxBorderColor
SeguenceBoxFontColor
SeguenceBoxFontMame
SequenceBoxFontSize
SequenceBoxFontStyle
SequenceDelayFontColor

SequenceDelayFontName
SequenceDelayFontSize
SequenceDelayFontStyle
SequenceDividerBorderThickness
SequenceDividerFontColor
SequenceDividerFontMame
SequenceDividerFontSize
SequenceDividerFontStyle
SequenceGroupBodyBackgroundColor
SequenceGroupBorderThickness
SequenceGroupFontColor
SequenceGroupFontName
SequenceGroupFontSize
SequenceGroupFontStyle
SequenceGroupHeaderFontColor
SequenceGroupHeaderFontName
SequenceGroupHeaderFontSize
SequenceGroupHeaderF ontStyle
SequencelifeLineBorderColor
SequencelifeLineBorderThickness
SequenceMessageAlignment
SequenceMessageT extAlignment
SequenceNewpageSeparatorColor
SequenceParticipant
SequenceParticipantBorderT hickness
SequenceReferenceAlignment
SequenceReferenceBackgroundColor
SequenceReferenceBorderThickness
SequenceReferenceFontColor
SequenceReferenceFontMame
SequenceReferenceFontSize
SequenceReferenceFontStyle
SequenceReferenceHeaderBackgroundColor
SequenceStereotypeFontColor
SequenceStereotypeFontName
SequenceStereotypeFontSize
SequenceStereotypeFontStyle
Shadowing

StackFontColor

StackFontName

StackFontSize

StackFontStyle
StackStereotypeFontColor
StackStereotypeFontName
StackStereotypeFontSize
StackStereotypeFontStyle
StateAttributeF ontColor
StateAttributeF ontName
StateAttributeF ontSize
StateAttributeF ontStyle
StateBorderColor

StateFontColor

StateFontName

StateFontSize

StateFontStyle
StateMessageAlignment
StereotypePosition
StorageFontColor
StorageFontMName
StorageFontSize
StorageFontStyle
StorageStereotypeFontColor
StorageStereotypeFontName
StorageStereotypeFontSize
StorageStereotypeFontStyle

Style

SvglinkTarget
SwimlaneBorderThickness
SwimlaneTitleFontColor
SwimlaneTitleFontName
SwimlaneTitleF ontSize:
SwimlaneTitleF ontStyle
SwimlaneWidth
SwimlaneWrapTitleWidth

TabSize

TimingFontColor
TimingFontMName

TimingFontSize

TimingFontStyle
TitleBorderRoundCorner
TitleBorderT hickness
TitleFontCalor

TitleFontName

TitleFontSize

TitleF ontStyle
UsecaseBorderThickness
UsecaseFontColor
UsecaseFontName
UsecaseFontSize
UsecaseFontStyle
UsecaseStereotypeFontColor
UsecaseStereotypeF ontName
UsecaseStereotypeF ontSize
UsecaseStereotypeF ontStyle
‘WrapWidth

512 / 580

24.10 List of all skinparam parameters 24 SKINPARAM COMMAND

24.10.4 All Skin Parameters on the Ashley’s PlantUML Doc

You can also view each skinparam parameters with its results displayed at the page A11 Skin Parameters
of Ashley's PlantUML Doc:

« https://plantuml-documentation.readthedocs.io/en/latest/formatting/all-skin-params.html.

§

Guide de référence du langage PlantUML (1.2025.0) 513 / 580

25 PREPROCESSEUR

25 Preprocesseur

Des fonctionnalités de préprocessing ont été incluses dans PlantUML et sont disponibles pour tous les

diagrammes.

Ces fonctionnalités sont assez proches du préprocesseur du language C, a la différence pour le caractere

a été remplacé par le point d’exclamation !.

25.1 Variable definition [=, 7=]

Although this is not mandatory, we highly suggest that variable names start with a $.

There are three types of data:

o Integer number (int);

e String (str) - these must be surrounded by single quote or double quote;

e JSON (JSON) - either JSON Array or JSON Object or JSON value created by %str2json.

(for JSON wvariable definition and usage, see more details on Preprocessing-JSON page)

Variables created outside function are global, that is you

can access them from everywhere (including

from functions). You can emphasize this by using the optional global keyword when defining a variable.

@startuml

1$a = 42

1$ab = "fool"

18cd = "foo2"

1$ef = $ab + $cd

1$foo = { "name": "John", "age" : 30 }
Alice -> Bob : $a

Alice -> Bob : $ab

Alice -> Bob : $cd

Alice -> Bob : $ef

Alice -> Bob : Do you know **$foo.name** 7
Q@enduml

]

1 42

Bob‘

I foo1 !
| foo2 -
| foolfoo2 o

! Do you know John 7 |

]

v
|

Bob ‘

You can also assign a value to a variable, only if it is not already defined, with the syntax: !$a ?= "foo"

@startuml

Alice -> Bob : 1. **$name** should be empty

!$name 7= "Charlie"

Alice -> Bob : 2. **$namex* should be Charlie
I$name = "David"
Alice -> Bob : 3. **$namex* should be David

!$name 7= "Ethan"

§

Guide de référence du langage PlantUML (1.2025.0)

514 / 580

25.2 Boolean expression 25 PREPROCESSEUR

Alice -> Bob : 4. **$namex** should be David

@enduml
e

1 1. $name should beempty |

1 2. Charlie should be Charlie -

=

' 3. David should be David |

' 4. David should be David !

v
i |

e

25.2 Boolean expression

25.2.1 Boolean representation [0 is false]

There is not real boolean type, but PlantUML use this integer convention:
o Integer O means false

e and any non-null number (as 1) or any string (as "1", or even "0") means true.

[Ref. QA-9702]

25.2.2 Boolean operation and operator [&&, ||, ()]
You can use boolean expression, in the test, with :

e parenthesis ();

e and operator &&;

e or operator ||.

(See next example, within if test.)

25.2.3 Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)]
For convenience, you can use those boolean builtin functions:

o Jfalse()

o Jtrue()

o Ynot(<exp>)

e Yboolval (<exp>)
[See also Builtin functions] [Ref. PR-1873]

25.3 Conditions [lif, !else, !elseif, !endif]
e You can use expression in condition.

e clse and elseif are also implemented

@startuml

1$a = 10

1$ijk = "foo"

Alice -> Bob : A

1if ($ijk == "foo") && ($a+10>=4)
Alice -> Bob : yes

lelse

Alice -> Bob : This should not appear

§

Guide de référence du langage PlantUML (1.2025.0) 515 / 580

25.4 While loop [lwhile, lendwhile] 25 PREPROCESSEUR

lendif
Alice -> Bob : B
@enduml

Alice ‘ Bob |
A

—

| yes
—
;BH.

‘AHCE‘ ‘Bob|

25.4 Wahile loop [!while, !endwhile]

You can use !'while and !'endwhile keywords to have repeat loops.

25.4.1 While loop (on Activity diagram)

@startuml
Iprocedure $foo($arg)
:procedure start;
lwhile $arg!=0
1$i=3
#palegreen:arg=$arg;
'while $i!=0
rarg=$arg and i=$i;
1$i = $i - 1
'endwhile
'$arg = $arg - 1
lendwhile
:procedure end;
!endprocedure

start
$foo(2)
end
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 516 / 580

25.4 While loop [lwhile, lendwhile]

25 PREPROCESSEUR

o

& ™,

| procedure start |

.

arg=2 and i=3 \|

./-
l_
. .y

:

|l arg=2 and i=2 |
J

|

| arg=2 and i=1 \|
" o

i

-\\u
arg=1and i=3 |

"

:

-
arg=1 and i=2 |

b

r

arg=1 and i=1 |

A,

5

™
| procedure end |
\ ;

[Adapted from QA-10838]

25.4.2 While loop (on Mindmap diagram)

O@startmindmap
Iprocedure $foo($arg)
lwhile $arg!=0
1$i=3
** [#palegreen] arg = $arg
'while $i!=0
*k% 1 = $i
1$1 = $1 - 1
'endwhile
'$arg = $arg - 1
lendwhile
!endprocedure

*:While
Loop;
$fo0(2)
@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

517 / 580

25.5 Procedure [Iprocedure, lendprocedure] 25 PREPROCESSEUR

25.4.3 While loop (on Component/Deployment diagram)

O@startuml
Iprocedure $foo($arg)
lwhile $arg!=0
[Component $arg] as $arg
!$arg = $arg - 1
lendwhile
!endprocedure

$foo(4)
1->2

3-->4
@enduml

h J

Component 1 Component 2

g] g1
Component 3

El ‘

Y

g]
Component 4

[Ref. QA-14088]

25.5 Procedure [!procedure, !endprocedure]
e Procedure names should start with a $
e Argument names should start with a $
e Procedures can call other procedures

Example:

Ostartuml

Iprocedure $msg($source, $destination)
$source --> $destination

!endprocedure

§

Guide de référence du langage PlantUML (1.2025.0) 518 / 580

25.6 Return function [!function, lendfunction]

25 PREPROCESSEUR

Iprocedure $init_class($name)
class $name {
$addCommonMethod ()
}

!endprocedure

Iprocedure $addCommonMethod ()
toString()
hashCode ()

!endprocedure

$init_class("fool")
$init_class("foo2")
$msg("fool", "foo2")
@enduml

© foo1

toString()
hashCode()

Y

@ foo2

toString()
hashCode()

Variables defined in procedures are local. It means that the variable is destroyed when the procedure

ends.

25.6 Return function [!function, !endfunction]

A return function does not output any text. It just define a function that you can call:

e directly in variable definition or in diagram text
e from other return functions

e from procedures

e Function name should start with a $

e Argument names should start with a $

@startuml

Ifunction $double($a)
Ireturn $a + $a
lendfunction

Alice -> Bob : The double of 3 is $double(3)
@enduml

E =

| The double of 3is 6 _ |

e

§

Guide de référence du langage PlantUML (1.2025.0)

)

519 / 580

25.7 Default argument value 25 PREPROCESSEUR

It is possible to shorten simple function definition in one line:

@startuml
Ifunction $double($a) !return $a + $a

Alice -> Bob : The double of 3 is $double(3)
Alice -> Bob : $double("This work also for strings.")

@enduml
Alice | Bob |

| The double of 3 is 6 I

.
r o

! This work also for strings. This work also for strings. |

v
i i

] o]

As in procedure (void function), variable are local by default (they are destroyed when the function is
exited). However, you can access to global variables from function. However, you can use the local
keyword to create a local variable if ever a global variable exists with the same name.

@startuml

Ifunction $dummy ()

Ilocal $ijk = "local"

Ireturn "Alice -> Bob : " + $ijk
'endfunction

lglobal $ijk = "foo"

Alice -> Bob : $ijk
$dummy ()
Alice -> Bob : $ijk
@enduml

Alice ‘ Bob |
: foo

I local |
—_—
‘ Alice ‘ ‘ Bob |

25.7 Default argument value
In both procedure and return functions, you can define default values for arguments.

@startuml

Ifunction $inc($value, $step=1)
Ireturn $value + $step
'endfunction

Alice -> Bob : Just one more $inc(3)
Alice -> Bob : Add two to three : $inc(3, 2)
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 520 / 580

25.8 Unquoted procedure or function [lunquoted]

25 PREPROCESSEUR

me [l

I Just one more 4

o
|

" Add two to three: 5

pe) [

Only arguments at the end of the parameter list can have default values.

@startuml
Iprocedure defaulttest($x, $y="DefaultY", $z="DefaultZ")
note over Alice
x = $x
y = $y
z = $z
end note
!endprocedure

defaulttest (1, 2, 3)
defaulttest(1, 2)
defaulttest (1)
Q@enduml

J

s

M
mmn
[S

efaultZ

x=1
y = Defaulty
z = DefaultZ

|AHDE|

25.8 Unquoted procedure or function [lunquoted]

By default, you have to put quotes when you call a function or a procedure. It is possible to use the
unquoted keyword to indicate that a function or a procedure does not require quotes for its arguments.

@startuml

lunquoted function id($textl, $text2="F00") !return $textl + $text2

alice -> bob : id(aa)
alice -> bob : id(ab,cd)
@enduml

| aaFO0 |

! abed !
1 1

§

Guide de référence du langage PlantUML (1.2025.0)

521 / 530

25.9 Keywords arguments 25 PREPROCESSEUR

25.9 Keywords arguments
Like in Python, you can use keywords arguments :

@startuml

lunquoted procedure $element($alias, $description="", $label="", $technology="", $size=12, $colour
rectangle $alias as "

<color:$colour><<$alias>></color>

==$label==

//<size:$size>[$technologyl</size>//

$description”
!endprocedure

$element (myalias, "This description is %newline()on several lines", $size=10, $technology="Java")
@enduml

amyaliasy
[Hava]

This description is
on several lines

25.10 Including files or URL [linclude, !include__many, !include__once]

Use the !'include directive to include file in your diagram. Using URL, you can also include file from
Internet/Intranet. Protected Internet resources can also be accessed, this is described in URL authenti-
cation.

Imagine you have the very same class that appears in many diagrams. Instead of duplicating the descrip-
tion of this class, you can define a file that contains the description.

@startuml

interface List
List : int size()
List : void clear()
List <|.. ArrayList
@enduml

@) List

int size()
void clear()

e

I
@ArrayList

File List.iuml

interface List
List : int size()
List : void clear()

The file List.iuml can be included in many diagrams, and any modification in this file will change all
diagrams that include it.

§

Guide de référence du langage PlantUML (1.2025.0) 522 / 580

=

25.11 Including Subpart [Istartsub, lendsub, lincludesub] 25 PREPROCESSEUR

You can also put several @startuml/@enduml text block in an included file and then specify which block
you want to include adding '0 where 0 is the block number. The !0 notation denotes the first diagram.

For example, if you use !include foo.txt'1, the second @startuml/@enduml block within foo.txt will
be included.

You can also put an id to some @startuml/@enduml text block in an included file using @startuml (id=MY_0WN_ID)
syntax and then include the block adding !'MY_OWN_ID when including the file, so using something like
!include foo.txt!MY_OWN_ID.

By default, a file can only be included once. You can use !include_many instead of !include if you
want to include some file several times. Note that there is also a !include_once directive that raises an
error if a file is included several times.

25.11 Including Subpart [!startsub, !endsub, !includesub]|

You can also use !startsub NAME and !endsub to indicate sections of text to include from other files
using !includesub. For example:

filel.puml:

@startuml

A -> A : stuffil
Istartsub BASIC
B -> B : stuff2
lendsub
C ->C : stuff3
Istartsub BASIC
D -> D : stuff4
lendsub
@enduml

filel.puml would be rendered exactly as if it were:

@startuml

A -> A : stuffil
B -> B : stuff2
C ->C : stuff3
D -> D : stuff4
Q@enduml

However, this would also allow you to have another file2.puml like this:
file2.puml

@startuml

title this contains only B and D

lincludesub filel.puml!BASIC
@enduml

This file would be rendered exactly as if:
O@startuml

title this contains only B and D
B -> B : stuff2

D -> D : stuffd
@enduml

25.12 Builtin functions [%]

Some functions are defined by default. Their name starts by %

§

Guide de référence du langage PlantUML (1.2025.0) 523 / 580

25.13 Logging [llog]

25 PREPROCESSEUR

Name Description

%boolval Convert a value (String, Integer, JSON wvalue) to boolean value

%call_user_func Invoke a return function by its name with given arguments.

%chr Return a character from a give Unicode value

%darken Return a darken color of a given color with some ratio

%date Retrieve current date. You can provide an optional format for the date
You can provide another optional time (on epoch format)

%dec2hex Return the hexadecimal string (String) of a decimal value (Int)

%dirpath Retrieve current dirpath

%feature Check if some feature is available in the current PlantUML running version

%false Return always false

%file_exists Check if a file exists on the local filesystem

%filename Retrieve current filename

%function_exists

Check if a function exists

%get_all_theme

Retreive a JSON Array of all PlantUML theme

%get_all_stdlib

Retreive a JSON Array of all PlantUML stdlib names

%get_all_stdlib

Retreive a JSON Object of all PlantUML stdlib information

%get_variable_value

Retrieve some variable value

%getenv Retrieve environment variable value

%hex2dec Return the decimal value (Int) of a hexadecimal string (String)

%hsl_color Return the RGBa color from a HSL color %hsl_color(h, s, 1) or %hsl_color(h, s, 1,
%intval Convert a String to Int

%invoke_procedure

Dynamically invoke a procedure by its name, passing optional arguments to the called proce

%is_dark

Check if a color is a dark one

%is_light

Check if a color is a light one

%lighten Return a lighten color of a given color with some ratio
%load_json Load JSON data from local file or external URL
%lower Return a lowercase string

Jmod Return the remainder of division of two integers (modulo division)
%newline Return a newline

%not Return the logical negation of an expression

fnow Return the current epoch time

%hord Return a Unicode value from a given character
%lighten Return a lighten color of a given color with some ratio
%random () Return randomly the integer 0 or 1

%random(n) Return randomly an interger between 0 and n - 1

Y%random(min, max)

Return randomly an interger between min and max - 1

Jreverse_color

Reverse a color using RGB

Yreverse_hsluv_color

Reverse a color using HSLuv

%set_variable_value

Set a global variable

Yhsize

Return the size of any string or JSON structure

%splitstr Split a string into an array based on a specified delimiter.
%splitstr_regex Split a string into an array based on a specified REGEX.
%string Convert an expression to String

%strlen Calculate the length of a String

%strpos Search a substring in a string

%substr Extract a substring. Takes 2 or 3 arguments

%htrue Return always true

fupper Return an uppercase string

%variable_exists Check if a variable exists

%version Return PlantUML current version

25.13 Logging [!'log]

You can use !log to add some log output when generating the diagram. This has no impact at all on
the diagram itself. However, those logs are printed in the command line’s output stream. This could be
useful for debug purpose.

&« Guide de référence du langage PlantUML (1.2025.0) 524 / 580

25.14 Memory dump [ldump__memory]

25 PREPROCESSEUR

@startuml

'function bold($text)

1$result = ""+ $text +""

llog Calling bold function with $text. The result is $result
Ireturn $result

lendfunction

Alice -> Bob : This is bold("bold")
Alice -> Bob : This is bold("a second call")

@enduml
AHce| ‘ Bob|

! This is bold

]
! This is a second call _ '

-
| |

AHG&| ‘ Bob|

25.14 Memory dump [!dump__memory]

You can use !dump_memory to dump the full content of the memory when generating the diagram. An
optional string can be put after !dump_memory. This has no impact at all on the diagram itself. This

could be useful for debug purpose.

@startuml

Ifunction $inc($string)
1$val = Yintval($string)
'log value is $val
!dump_memory

Ireturn $val+l
'endfunction

Alice -> Bob : 4 $inc("3")

'unused = "foo"
!'dump_memory EOF
@enduml

AHce‘ Bob|
144 !

ea] [
25.15 Assertion [!assert]

You can put assertions in your diagram.

@startuml

Alice -> Bob : Hello

lassert %strpos("abcdef", "cd")==3 : "This always fails"
@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

525 / 580

25.16 Building custom library [limport, !include] 25 PREPROCESSEUR

Welcome to PlantUML!

!{.
You can start with a simple UML Diagram like: 4
Bob->Rlice: Hello ‘ .
Cr
class Example

You will find more information about PlantUML syntax on https://plantuml.com

(Details by typing 1 icense keyword)

PlantUML 1.2025.0

[From string (line 3)]

@startuml
Alice -> Bob : Hello
lassert %strpos("abcdef”, "cd")==3: "This always fails"

25.16 Building custom library [!import, !include]

It’s possible to package a set of included files into a single .zip or .jar archive. This single zip/jar can
then be imported into your diagram using !import directive.

Once the library has been imported, you can !include file from this single zip/jar.
Example:
@startuml

limport /path/to/customLibrary.zip
' This just adds "customLibrary.zip" in the search path

linclude myFolder/myFile.iuml
' Assuming that myFolder/myFile.iuml is located somewhere
' either inside "customLibrary.zip" or on the local filesystem

25.17 Search path

You can specify the java property plantuml.include.path in the command line.
For example:
java -Dplantuml.include.path="c:/mydir" -jar plantuml.jar atestl.txt

Note the this -D option has to put before the -jar option. -D options after the -jar option will be used to
define constants within plantuml preprocessor.

25.18 Argument concatenation [##]

It is possible to append text to a macro argument using the ## syntax.

@startuml

lunquoted procedure COMP_TEXTGENCOMP (name)
[name] << Comp >>

interface Ifc << IfcType >> AS name##Ifc
name##Ifc - [name]

!endprocedure

COMP_TEXTGENCOMP (dummy)

@enduml

&« Guide de référence du langage PlantUML (1.2025.0) 526 / 580

25.19 Dynamic invocation [}invoke_procedure(), jicall_user_func()] 25 PREPROCESSEUR

25.19 Dynamic invocation [/invoke_procedure(), %call_user_func()]

You can dynamically invoke a procedure using the special %invoke_procedure() procedure. This pro-
cedure takes as first argument the name of the actual procedure to be called. The optional following
arguments are copied to the called procedure.

For example, you can have:

@startuml
Iprocedure $go()

Bob -> Alice : hello
!endprocedure

'$wrapper = "$go"

%invoke_procedure ($wrapper)

@enduml
=
Ehmm E
] (]
O@startuml

Iprocedure $go($txt)
Bob -> Alice : $txt
!endprocedure

%invoke_procedure("$go", "hello from Bob...")

Q@enduml
™

I helle from Bob. .
—_—

Bob ‘AME|
For return functions, you can use the corresponding special function %call_user_func() :

@startuml

'function bold($text)
Ireturn ""+ $text +""
lendfunction

Alice -> Bob : Y%call_user_func("bold", "Hello") there

@enduml
AHce‘ | Bob

' Hello there _ !
T

o o

§

Guide de référence du langage PlantUML (1.2025.0) 527 / 580

25.20 Evaluation of addition depending of data types [+]

25 PREPROCESSEUR

25.20 Evaluation of addition depending of data types [+]

Evaluation of $a + $b depending of type of $a or $b

@startuml
title

<#LightBlue>|= |= $a |=

$b |=

<U+0025>string($a + $b) |

<#LightGray>| type | str | str | str (concatenation) |
I example |= ngn |= npn |= %string("a" + llbll) |
<#LightGray>| type | str | int | str (concatenation) |

| ex.|= "a" |= 2 |= Ystring("a" + 2) |

<#LightGray>| type | str | int | str (concatenation) |

| ex.|= 1 [="b" |= Ystring(l + "b") |

<#LightGray>| type | bool | str | str (concatenation) |

| ex.|= <U+0025>true() |= "b" |= Ystring(%true() + "b") |
<#LightGray>| type | str | bool | str (concatenation) |

| ex.|= "a" |= <U+0025>false() |= Ystring("a" + %false()) |

<#LightGray>| type | int |
| ex.1= 1 [= 2
<#LightGray>| type | bool |

<#LightGray>| type | int |

int |
|= %string(l + 2)

int |

bool |

int (addition of int) |

int (additiom) |
| ex.|= <U+0025>true() |= 2 |= Ystring(Ytrue() + 2) |
int (addition) |

| ex.|= 1 |= <U+0025>false() |= %string(l + %false()) |
<#LightGray>| type | dint | int | int (addition) |
| ex.|= 1 |[|= <U+0025>intval("2") |= %string(l + %intval("2")) |
end title
@enduml
$a $b %string($a + $h)
type str str str (concatenation)
example|"a" "b" ab
type str int str (concatenation)
ex. "a" 2 a2
type str int str (concatenation)
ex. 1 "h" 1b
type bool str str (concatenation)
ex. Yetrue() | "b" 1b
type str bool str (concatenation)
ex. "a" Yefalse() al
type int int int (addition of int)
ex. 1 2 3
type bool int int {(addition)
ex. Yetrue() | 2 3
type int bool int (addition)
ex. 1 Yofalse() 1
type int int int (addition)
ex. 1 Seintval{"2™) |3

25.21 Preprocessing JSON

You can extend the functionality of the current Preprocessing with JSON Preprocessing features:

e JSON Variable definition
e Access to JSON data
e Loop over JSON array

(See more details on Preprocessing-JSON page)

25.22 Including theme [!theme]

Use the !theme directive to change the default theme of your diagram.

&« Guide de référence du langage PlantUML (1.2025.0)

528 / 580

25.23 Migration notes 25 PREPROCESSEUR

@startuml

'theme spacelab

class Example {
Theme spacelab

b

@enduml

C Example

Theme spacelab

You will find more information on the dedicated page.

25.23 Migration notes

The current preprocessor is an update from some legacy preprocessor.

Even if some legacy features are still supported with the actual preprocessor, you should not use them
any more (they might be removed in some long term future).

e You should not use !define and !definelong anymore. Use !function, !procedure or variable
definition instead.

— !define should be replaced by return !function

— !definelong should be replaced by !procedure.
e l!include now allows multiple inclusions : you don’t have to use !include_many anymore
e !include now accepts a URL, so you don’t need !includeurl
o Some features (like %date?) have been replaced by builtin functions (for example %date())

e When calling a legacy !definelong macro with no arguments, you do have to use parenthesis.
You have to use my_own_definelong() because my_own_definelong without parenthesis is not
recognized by the new preprocessor.

Please contact us if you have any issues.

25.24 Ysplitstr builtin function

@startmindmap
1$1list = Y%splitstr("abc~def~ghi", "~")

* root

Iforeach $item in $list
*x $item

lendfor

@endmindmap

Similar to:

§

Guide de référence du langage PlantUML (1.2025.0) 529 / 580

25.25 Jsplitstr_regex builtin function

25 PREPROCESSEUR

O@startmindmap
* root

Iforeach $item in ["abc", "def", "ghi"]

*x $item
lendfor
@endmindmap

[Ref. QA-1537}]

25.25 Ysplitstr_regex builtin function

@startmindmap

I$list = Y%splitstr_regex("AbcDefGhi", "(?=[A-Z])")

* root

Iforeach $item in $list
** $item

lendfor

@endmindmap

Similar to:

@startmindmap
* root

Iforeach $item in ["Abc", "Def", "Ghi"]

** $item
lendfor
@endmindmap

§

Guide de référence du langage PlantUML (1.2025.0)

530 / 580

25.26 Jget_all_theme builtin function

25 PREPROCESSEUR

[Ref. QA-18827]

25.26 Yget_all_theme builtin function

You can use the %get_all_theme () builtin function to retreive a JSON array of all PlantUML theme.

@startjson
%get_all_theme()
Q@endjson

-

none

amiga

dws-orange

black-knight

bluegray

blueprint

carbon-gray

cerulean

cerulean-outline

cloudscape-design

crt-amber

crt-green

cyborg

cyborg-outline

hacker

lightgray

mars

materia

materia-outline

metal

mimeograph

minty

mono

plain

reddress-darkblue

reddress-darkgreen

reddress-darkorange

reddress-darkred

reddress-lightblue

reddress-lightgreen

reddress-lightorange

reddress-lightred

sandstone

silver

sketchy

sketchy-outline

spacelab

spacelab-white

sunlust

superhero

superhero-outline

toy

united

| vibrant

«
&« Guide de référence du langage PlantUML (1.2025.0)

531 / 580

25.27 Jget_all_stdlib builtin function

25 PREPROCESSEUR

[from version 1.2024.4]

25.27 Yget_all_stdlib builtin function

25.27.1 Compact version (only standard library name)

You can use the %get_all_stdlib() builtin function to retreive a JSON array of all PlantUML stdlib

names.

O@startjson

%get_all_stdlib()

@endjson

25.27.2 Detailed version (with version and source)

archimate

awWs

awslib

awslib10

awslib14

dazure

c4

classy

classy-c4

cloudinsight

cloudogu

domainstory

edgy

eip

elastic

gacp

k8s

kubernetes

logos

material

office

osa

osa2

tupadr3

With whatever parameter, you can use %get_all_stdlib(detailed) to retreive a JSON object of all

PlantUML stdlib.

@startjson

%get_all_stdlib(detailed)

@endjson

«
&« Guide de référence du langage PlantUML (1.2025.0)

532 / 580

25 PREPROCESSEUR

25.27 Jget_all_stdlib builtin function

(name |archimate
_.»version | 11.0
) |source | hitps://github.com/plantuml-stdlib/Archimate-PlantUML |
(name [aws)
; _.--7| version [18.02.22
{ | source | hitps:¥github.com/milo-minderbinder/AWS-PlantUML |
;'r :" (name |awslib)
¥) -~Mversion | 14.0.0
. |source | hitps://github.com/awslabs/aws-icons-for-plantuml
:: (name |awslib10)
: ..--"?|version | 10.0.0
:: P ’ |source | hitps://github.com/awslabs/aws-icons-for-plantuml
! (name |awslib14)
Ly --* version | 14.0.0
t |source | hitps://github.com/awslabs/aws-icons-for-plantuml
H name |[azure
EA .--F|version | 22.0
: .’: |\source | hitps://github.com/plantuml-stdlib/Azure-PlantU ML |
r (name |c4 1
-7 version (2.11.0
I | source | https:/igithub.com/plantumi-stdiib/C4-PlantUML |
: (name classy)
f; . version | 1.0.2
3 L |\source | hitps://github.com/james-gadrow-kr/classy-plantumi |
I (name classy-c4 1
.---Fversion | 1.0.3
’ |source | hitps://github.com/james-gadrow-kr/classy-c4 |
archimate
aws (name cloudinsight)
awslib version | 1.0.0
awslib10 T 'J-'Lsnurce https://github.com/plantuml-stdlib/cicon-plantuml-sprites |
awslib14 g -
azure name |cloudogu
cd ’ version | 1.0.2
classy - et "Lsuurce hitps://github.com/cloudogu/plantuml-cloudogu-sprites |
classy-c4 .-l) - . .
cloudinsight | + ” name |domainstory
cloudogu el version [0.4.0
domainstory | #---------=""" --»¥ source | https:fgithub.com/johthor/DomainStory-PlantUML |
e!:igy i > nhame |edgy)
ep - T] version | 0.8.0
SLute °T R |source | hitps://github.com/boessu/plantuml-stdlib |
acp bl IR .
= =1 I': "o [name eip)
kubernetes | ®--.} ;'I *version | 1.0.0
logos T { |source | https://github.com/plantumi-stdli/EIP-PlantUML |
material b "-.
. office i R TE ._“rname elastic)
&I°B,idede Mo - du lang@Y8 BT, (1 2025 0)
osa2 ek | source | https:/github.com/Crashedmind/PlantUML-Elastic-icons |
tupadr3 _‘L . _]

fname |gcp
w — 1

533 / 580

25.28 Jrandom builtin function 25 PREPROCESSEUR

[from version 1.2024.4]

25.28 Y%random builtin function
You can use the %random builtin function to retreive a random integer.
Nb param. | Input Output
0 Y%random/() returns 0 or 1
1 Yrandom(n) returns an interger between 0 and n - 1
2 Y%random(min, max) | returns an interger between min and maz - 1
O@startcreole
Nb param.	Input	Output
0	<U+0025>random()	%random()
1	<U+0025>random(5)	Y%random(5)

| 2 | <U+0025>random(7, 15) | Y%random(7, 15) |

Q@endcreole
Nb param. | Input Output
0 Yarandom() 1
1 Yarandom(3) 4
2 Yarandom(7, 15)]9

[from version 1.2024.2]

25.29 %boolval builtin function

You can use the %boolval builtin function to manage boolean value.

@startcreole

<#tccc>|= Input = Output |
<U+0025>boolval (1) %boolval (1) |
<U+0025>boolval (0) %boolval (0) |

<U+0025>boolval (<U+0025>true())
<U+0025>boolval (<U+0025>false())

%boolval (%true()) |
%boolval (%false()) |

<U+0025>boolval (true) %boolval (true) |
<U+0025>boolval (false)

%boolval (TRUE) |
<U+0025>boolval (FALSE) %boolval (FALSE) |

<U+0025>boolval ("true")
<U+0025>boolval("false")
<U+0025>boolval (<U+0025>str2json("true"))
<U+0025>boolval (<U+0025>str2json("false"))

%boolval ("true") |
%boolval("false") |
%boolval (%str2json("true")) |

|
|
|
|
|
|
| %boolval(false) |
|
|
|
|
|
| %boolval(%str2json("false")) |

|
|
|
|
|
|
| <U+0025>boolval (TRUE)
|
|
|
|
|

@endcreole
Input Output
Yoboolval{ 1) 1
Yoboolval{ () 0
Soboolval{ %atrue()) 1
Soboolval{ Yelalse()) 0
Soboolval({tre) 1
Soboolval(false) 0
Soboolvall TRUE) 1
SYoboolval(FALSE) 1]
Soboolval{"rue") 1
Soboolval("false™) 0
Soboolval{ Yestr2jsoni"true") 1
Soboolval{ %estr2jsoni"false")) |0

[Ref. PR-1873, from version 1.2024.7]

«
&« Guide de référence du langage PlantUML (1.2025.0) 534 / 580

26 UNICODE

26 Unicode

Le langage PlantUML utilise des lettres pour définir les acteurs, les cas d’utilisation, etc.

Mais les lettres ne sont pas seulement des caracteres latins A-Z, il peut s’agir de n’importe quel type de
lettre de n’importe quelle langue

26.1 Examples

O@startuml
skinparam handwritten true
skinparam backgroundColor #EEEBDC

actor fiiH &
participant "BHZEAE" as A
participant "3 “JH" as B

participant "E{R —HAR" as HIFIH P
& > A SERGETHTAR

activate A

A -> B: Al

activate B

B -> R PE: Bl
activate JMIH I

AR RIS --> B: iaT8 TYE5E MK
destroy Jill i 5 FH

B ——> A: FHKRAIE

deactivate B

A --> fEAIRE: o

deactivate A

Q@enduml
{3
_:r—.
VAN e P e e j
o il i J WM (R
| SERUETET A, | E
1..5”1! ____________
{iFl % Cepocmn | | Meremem
O () (% ﬁj A=
T
.r‘f\n
@startuml

() —=> " En
-=> === §1 ===

-=> Bhs A R

§

Guide de référence du langage PlantUML (1.2025.0) 535 / 580

26.1 Examples

26 UNICODE

S2
-=> JE Ak A

—> (%)

skinparam
skinparam
skinparam
skinparam
skinparam
skinparam
Q@enduml

@startuml

skinparam
skinparam
skinparam
skinparam

fEH#E <<

backgroundColor #AAFFFF
activityStartColor red
activityBarColor SaddleBrown
activityEndColor Silver
activityBackgroundColor Peru
activityBorderColor Peru

usecaseBackgroundColor DarkSeaGreen
usecaseArrowColor Olive
actorBorderColor black
usecaseBorderColor DarkSlateGray

N >>

"EBIER as BUHRRE << EHREX >

CEAD <<

" Kol e

HHE -

—f >>

as (BAR) << AN >>

(FEAD

EH#H --> (R
BgRE -—> (A

@enduml

§

Guide de référence du langage PlantUML (1.2025.0)

536 / 580

26.2 Jeu de caracteres 26 UNICODE

w A By - o JE T
= I
a5l
AN - AN
[HIE N R
\\\ /
\. /
pr—y
R 2 T
L EHARR
@startuml
() 7’2 » as E
b -]
[I1].>0)A A
@enduml
. g1
L Mrnvé mohepoxapric
ZWwKpamcg I

ghval WelTng |

| AUTEG 01 PpaoEIg
(Bev aonpaivouy TiTroTa
|

|

|

I/_\I

ABrjva

26.2 Jeu de caractéres

Le jeu de caracteres par défaut utilisé lors de la lecture des fichiers texte contenant la description textuelle
UML dépend du systeme.

Normalement, il devrait convenir, mais dans certains cas, vous pouvez souhaiter utiliser un autre jeu de
caracteres. Par exemple, avec la ligne de commande

java -jar plantuml.jar -charset UTF-8 files.txt
ou avec la tache ant

<!-- Put images in c:/images directory -->
<target name="main">
<plantuml dir="./src" charset="UTF-8" />

En fonction de votre installation Java, les jeux de caracteres suivants devraient étre disponibles : IS0-8859-1,
UTF-8, UTF-16BE, UTF-16LE, UTF-16

26.3 Using Unicode Character on PlantUML
On PlantUML diagram, you can integrate:
e Special characters using &#XXXX; or <U+XXXX> form;

e Emoji using <:XXXXX:> or <:NameOfEmoji:>form.

§

Guide de référence du langage PlantUML (1.2025.0) 537 / 580

27 BIBLIOTHEQUE STANDARD DE PLANTUML

27 Bibliotheque standard de PlantUML

Bienvenue au guide sur la bibliothéque standard officielle de PlantUML (stdlib). Ici, nous nous
plongeons dans cette ressource intégrale qui est maintenant incluse dans toutes les versions officielles de
PlantUML, facilitant une expérience de création de diagramme plus riche. La bibliotheque emprunte sa
convention d’inclusion de fichiers a la ”bibliotheque standard C”, un protocole bien établi dans le monde
de la programmation.

27.0.1 Vue d’ensemble de la bibliothéque standard

La bibliotheque standard est un dépot de fichiers et de ressources, constamment mis & jour pour améliorer
votre expérience de PlantUML. Elle forme 1’épine dorsale de PlantUML, offrant une gamme de fonction-
nalités et de caractéristiques a explorer.

27.0.2 Contribution de la communauté

Une partie importante du contenu de la bibliotheque est généreusement fournie par des contributeurs
tiers. Nous leur exprimons notre sincere gratitude pour leurs contributions inestimables qui ont joué un
role essentiel dans I'enrichissement de la bibliotheque.

Nous encourageons les utilisateurs a se plonger dans les abondantes ressources offertes par la bibliotheque
standard, non seulement pour améliorer leur expérience de création de diagrammes, mais aussi pour
contribuer et faire partie de cet effort de collaboration.

27.1 Contenu de la bibliotheéque standard

Vous pouvez obtenir le contenu la bibliotheque standard a ’aide du diagramme spécial suivant:

@startuml
stdlib
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 538 / 580

27.1

Contenu de la bibliothéque standard

27 BIBLIOTHEQUE STANDARD DE PLANTUML

§

archimate
Version 1.1.0
Delivered by hitps:/github.com/plantumb-stdlibd Archimate-PlantUML

aws
Version 18.02.22
Delivered by hitps:/github.com/milo-minderbinder/ AW S-PlantUML

awslib
Version 14.0.0
Delivered by hitps:github.com/awslabs/ aws-icons-for-plantuml

awslib10
Version 10.0.0
Delivered by hitps://github.com/awslabs/ aws-icons-for-plantuml

awslib14
Version 14.0.0
Delivered by hitps://github.com/awslabs/ aws-icons-for-plantuml

azure
Version 2.2.0
Delivered by hitps:github.com/plantumk-stdlibd Azure-PlantUML

cd
Version 2.11.0
Delivered by hitps:/(github.com/plantumi-stdliby C4-PlantUnML

classy
Version 1.0.2
Delivered by hitps://github.comfjames-gadrow-kr/ classy-plantuml

classy-c4
Version 1.0.3
Delivered by hitps://github.com/james-gadrow-kr/classy-c4

cloudinsight
Version 1.0.0
Delivered by hitps://github.com/plantuml-stdliitécicon-plantuml-sprites

cloudogu
Version 1.0.2

Delivered by hitps://github.com/cloudogu/plantuml-cloudogu-sprites

domainstory
Version 0.4.0
Delivered by hitps:/github.comifjohthor/DomainStory-PlantUML

e
Version 0.8.0
Delivered by hitps:/github.com/boessu/plantumkb-stdiib

eip
Version 1.0.0
Delivered by hitps://github.com/plantumi-stdiit EIP-PlantUnL

elastic
Version 0.0.1
Delivered by https://github.com/Crashedmind/PlantUML-Elastic-icons

gcp
Version 6.0.0
Delivered by hitps://github.com/Crashedmind/ PlantUML-icons-GCP

ks
Version 1.0.0
Delivered by hitps:/github.comideasatikubernetes-PlantUML

kubernetes
Version 5.3.45
Delivered by hitps:/github.com/plantumb-stdlib' plartuml-kubernetes-sprites

logos
Version 1.1.0
Delivered by hitps:/github.comiplantumi-stdlib'gilbarbara-plantuml-sprites

material
Version 0.0.1
Delivered by hitps://github.com/Templarian/MaterialDesign

Guide de référence du langage PlantUML (1.2025.0)

Version 1.0.0
Delivered by https://github.com/Roemer/plantuml-office

oS3

539 / 580

27.2 ArchiMate [archimate] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

11 est également possible d’utiliser la ligne de commande java -jar plantuml.jar -stdlib pour afficher
cette méme liste.

Enfin, vous pouvez extraire les sources completes de la bibliotheque standard en utilisant java -jar
plantuml. jar -extractstdlib. Tous les fichiers seront extraits dans le dossier stdlib.

Les sources utilisées pour construire les versions officielles de Plant UML sont hébergées ici https://github.com/plantuml/pl
stdlib. Vous pouvez créer une demande pour mettre a jour ou ajouter une bibliotheque si vous la trouvez
pertinente.

27.2 ArchiMate [archimate]

Type Lien

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/archimate
src https://github.com/ebbypeter /Archimate-PlantUML

orig https://en.wikipedia.org/wiki/ArchiMate

Ce référentiel contient les macros PlantUML d’ArchiMate et d’autres inclusions pour créer des dia-
grammes Archimate facilement et de maniere cohérente.

@startuml
linclude <archimate/Archimate>

title Archimate Sample - Internet Browser

' Elements

Business_Object (businessObject, "A Business Object")
Business_Process(someBusinessProcess, "Some Business Process")
Business_Service(itSupportService, "IT Support for Business (Application Service)")

Application_DataObject(dataObject, "Web Page Data \n 'on the fly'")
Application_Function(webpageBehaviour, "Web page behaviour")
Application_Component (ActivePartWebPage, "Active Part of the web page \n 'on the fly'")

Technology_Artifact(inMemoryItem,"in memory / 'on the fly' html/javascript")
Technology_Service(internetBrowser, "Internet Browser Generic & Plugin")
Technology_Service(internetBrowserPlugin, "Some Internet Browser Plugin")
Technology_Service(webServer, "Some web server")

'Relationships

Rel_Flow_Left (someBusinessProcess, businessObject, "")
Rel_Serving_Up(itSupportService, someBusinessProcess, "")
Rel_Specialization_Up(webpageBehaviour, itSupportService, "")
Rel_Flow_Right(dataObject, webpageBehaviour, "")
Rel_Specialization_Up(dataObject, businessObject, "")
Rel_Assignment_Left (ActivePartWebPage, webpageBehaviour, "")
Rel_Specialization_Up(inMemoryItem, dataObject, "")
Rel_Realization_Up(inMemoryItem, ActivePartWebPage, "")
Rel_Specialization_Right (inMemoryItem,internetBrowser, "")
Rel_Serving_Up(internetBrowser, webpageBehaviour, "")
Rel_Serving_Up(internetBrowserPlugin, webpageBehaviour, "")
Rel_Aggregation_Right (internetBrowser, internetBrowserPlugin, "")
Rel_Access_Up(webServer, inMemoryItem, "")

Rel_Serving Up(webServer, internetBrowser, "")

Q@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 540 / 580

27.2 ArchiMate [archimate] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Archimate Sample - Internet Browser

| B | { .:p“'

‘ A Business Object " | Some Business Process |

N

p

-

| —
IT Support for Business (Application Service)

s A

| =1

h £]
‘ Web Page Data

Active Part of the web page
‘on the fly'

4

__ __{ A
‘on the fly’ ‘H_Web page behavmurj

‘ O F D‘\ F D‘\
‘ in memory / "on the fly' htmljjavascript 1 Internet Browser Generic & Plugin Some Intemet Browser Plugin

F ™
(]
Some web server
h. -

27.2.1 Liste des sprites possibles
Vous pouvez lister tous les sprites possibles pour Archimate en utilisant le diagramme suivant

@startuml
listsprite
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 541 / 580

27.3 Amazon Labs AWS Library [awsliD]

27 BIBLIOTHEQUE STANDARD DE PLANTUML

List Current Sprites
Credit to

hitp:/'www archimatetool.com

archimate :

- access

2 activity
actor
aggregation

(D application-collaboration

2] application-component

& application-data-object
application-event
application-function

Dapplicaﬁnn-interadinn

~Drapplication-interface

= application-process

Trapplication-service
assessment-filled
assessment

o assignment

.~ association-unidirect
association

2 business-activity
business-actor

& business-collaboration

H business-contract

7’ business-event
business-function

(][business-interaction

- rbusiness-interface

Q business-location

EQ business-meaning

[business-object

= business-process
1 business-product
] business-representation
2 business-role

O business-service
> business-value

I collaboration

&3 communication-path
{l component

o composition

L7 constraint-filled

7 constraint

H contract

[deliverable-filed

[deliverable

device
driver-filled
driver

event
7 flow
ﬂ:] function
£ gap-illed

= gap
{5 goalfilled
@ goal

] implementation-deliverable

implementation-event
@ implementation-gap
= implementation-plateau

[implementation-workpackage

Y influence
{10} interaction
- interface-required

=] interface-symmetric
—interface
p junction-and
752 junction-ar
e junction
location
meaning
motivation-assessment
A7 mativation-constraint
motivation-driver
mativation-goal
£ motivation-meaning
motivation-outcome
motivation-principle
7 motivation-requirement
Z maotivation-stakeholder
> motivation-value
network.
(T node

B object

= physical-distribution-netwaork

{§} physicalequipment
physical-facility
physical-material

= plateau

[0 principle-filed

m principle

= process

1 product

A reglisation

[J representation

L7 requirement-filled

L7 requirement

= role

27.3 Amazon Labs AWS Library [awslib]

O service

A serving

/t| specialisation

A specialization

2 stakeholder-filled

- strategy-capability
strategy-course-of-action

[strategy-resource

Z_» strategy-value-stream

F system-software

[technology-artifact

I technology-collaboration

£ technalogy-communication-netwark
£3 technology-communication-path

H technology-device
technology-event

ﬂ:] technology-function

- technology-infra-interface

2 technology-infra-service

] technology-interaction

=2 technology-interface

23 technology-network

1 technology-node

&3 technology-path

= technology-process

T technology-service

¥ technology-system-software

" triggering

A" used-by

O value

[workpackage-filed

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/awslib
src https://github.com/awslabs/aws-icons-for-plantuml

orig https://aws.amazon.com/en/architecture/icons/

The Amazon Labs AWS library provides PlantUML sprites, macros, and other includes for Amazon Web

Services (AWS) services and resources.

Used to create PlantUML diagrams with AWS components. All elements are generated from the official
AWS Architecture Icons and when combined with PlantUML and the C4 model, are a great way to

communicate your design, deployment, and topology as code.

@startuml

linclude <awslib/AWSCommon>
linclude <awslib/InternetOfThings/IoTRule>
linclude <awslib/Analytics/KinesisDataStreams>

linclude <awslib/ApplicationIntegration/SimpleQueueService>

left to right direction

agent "Published Event" as event #fff

IoTRule(iotRule, "Action Error Rule",
KinesisDataStreams (eventStream, "IoT Events", "2 shards")
SimpleQueueService(errorQueue, "Rule Error Queue", "failed Rule actions")

event —--> iotRule

@enduml

§

JSON message
iotRule —--> eventStream
iotRule --> errorQueue

messages

Failed action message

Guide de référence du langage PlantUML (1.2025.0)

"error if Kinesis fails")

542 / 580

27.4 Azure library [azure] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

27.4 Azure library [azure]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/azure
src https://github.com/RicardoNiepel / Azure-PlantUML/

orig Microsoft Azure

The Azure library consists of Microsoft Azure icons.

Use it by including the file that contains the sprite, eg: !include <azure/Analytics/AzureEventHub>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the AzureCommon.puml file, eg: !include <azure/AzureCommon>, which contains
helper macros defined. With the AzureCommon . puml imported, you can use the NAME_OF _SPRITE (parameters. ..
macro.

Example of usage:

@startuml

linclude <azure/AzureCommon>

linclude <azure/Analytics/AzureEventHub>

linclude <azure/Analytics/AzureStreamAnalyticsJob>
linclude <azure/Databases/AzureCosmosDb>

left to right direction
agent "Device Simulator" as devices #fff

AzureEventHub (fareDataEventHub, "Fare Data", "PK: Medallion HackLicense VendorId; 3 TUs")
AzureEventHub (tripDataEventHub, "Trip Data", "PK: Medallion HackLicense VendorId; 3 TUs")
AzureStreamAnalyticsJob(streamAnalytics, "Stream Processing", "6 SUs")

AzureCosmosDb (outputCosmosDb, "Output Database", "1,000 RUs")

devices --> fareDataEventHub
devices --> tripDataEventHub
fareDataEventHub --> streamAnalytics
tripDataEventHub --> streamAnalytics
streamAnalytics --> outputCosmosDb

@enduml
wAzureEventHubs
Fare Data
7| [PK: Medallion HackLicense - iAzure StreamAnalyticsdob s wAzureCosmosDbe

- Vendorld; 3 TUs] * Stream Processing Output Database
Device Simulator > I

xx‘h wAzureEventHubis o :

A Trip Data [— (6 SUs] (1,000 RUs|

[FPK: Medaion HackLicense
Vendorld; 3 TUs]

§

Guide de référence du langage PlantUML (1.2025.0) 543 / 580

27.5 (4 Library [C4] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

27.5 C4 Library [CA4]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/C4
src https://github.com/plantuml-stdlib/C4-PlantUML

orig https://en.wikipedia.org/wiki/C4 modelhttps://c4model.com

@startuml
linclude <C4/C4_Container>

Person(personAlias, "Label", "Optional Description")
Container(containerAlias, "Label", "Technology", "Optional Description")
System(systemAlias, "Label", "Optional Description")

System_Ext (extSystemAlias, "Label", "Optional Description")

Rel(personAlias, containerAlias, "Label", "Optional Technology")

Rel_U(systemAlias, extSystemAlias, "Label", "Optional Technology")
@enduml

wexternal_systems

Label
Label

Optional Description

Optional Description

Label Label
[Optional Technology] [Optional Technalogy]

#wcontaners

Label
[Technology]

asystemns

Label

Optional Description Optional Description

27.6 Cloud Insight [cloudinsight]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/cloudinsight
src https://github.com/rabelenda/cicon-plantuml-sprites

orig Cloudinsight icons

This repository contains PlantUML sprites generated from Cloudinsight icons, which can easily be used
in PlantUML diagrams for nice visual representation of popular technologies.

Ostartuml

linclude <cloudinsight/tomcat>
linclude <cloudinsight/kafka>
linclude <cloudinsight/java>
linclude <cloudinsight/cassandra>

title Cloudinsight sprites example
skinparam monochrome true
rectangle "<$tomcat>\nwebapp" as webapp

3

Guide de référence du langage PlantUML (1.2025.0) 544 / 580

27.7 Cloudogu [cloudogu] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

queue "<$kafka>" as kafka
rectangle "<$java>\ndaemon" as daemon
database "<$cassandra>" as cassandra

webapp -> kafka
kafka -> daemon
daemon --> cassandra
@enduml

Cloudinsight sprites example

A %

webapp | ¥

27.7 Cloudogu [cloudogu]

n

daemon

|

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/cloudogu

src https://github.com/cloudogu/plantuml-cloudogu-sprites

orig https://cloudogu.com

The Cloudogu library provides PlantUML sprites, macros, and other includes for Cloudogu services and

resources.

@startuml

linclude <cloudogu/common>
linclude <cloudogu/dogus/jenkins>
linclude <cloudogu/dogus/cloudogu>
linclude <cloudogu/dogus/scm>
linclude <cloudogu/dogus/smeagol>
linclude <cloudogu/dogus/nexus>
linclude <cloudogu/tools/k8s>

node "Cloudogu Ecosystem" <<$cloudogu>> {
DOGU_JENKINS (jenkins, Jenkins) #ffffff
DOGU_SCM(scm, SCM-Manager) #ffffff
DOGU_SMEAGOL (smeagol, Smeagol) #ffffff
DOGU_NEXUS (nexus,Nexus) #ffffff

¥

TOOL_K8S(k8s, Kubernetes) #ffffff
actor developer

developer --> smeagol : "Edit Slides"
smeagol -> scm : Push

scm -> jenkins : Trigger

jenkins -> nexus : Deploy

jenkins --> k8s : Deploy

§

Guide de référence du langage PlantUML (1.2025.0)

545 / 580

27.8 EDGY: An Open Source tool for collaboratd¥e HHetIEHIQEE[GEANDARD DE PLANTUML

@enduml

a/ \\
developer

N

SCM-Manager Jenkins

Kubernetes

All cloudogu sprites

See all possible cloudogu sprites on plantuml-cloudogu-sprites.

27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master /edgy
src https://github.com/boessu/plantuml-stdlib/tree/master/edgy
orig https://enterprise.design/

blockquote “To become whole, enterprises must embrace a holistic, collaborative way of design: tran-
scending silos, combining perspectives, looking for connections instead of divisions. An enterprise de-
signed together works better together.”

-Bard Papegaaij, Wolfgang Goebl and Milan Guenther, curators of EDGY 23 blockquote

EDGY helps to visualize, communicate, and co-design enterprises across different disciplines. EDGY is a
design language that provides guidelines for enterprises to create effective and efficient digital products,
services, and experiences. It was developed by the EDGY team with input from industry experts,
researchers, and practitioners in order to address common challenges faced when developing complex
systems. The foundation of Edgy is based on four key principles: simplicity, modularity, scalability,
and adaptability. These principles are designed to help enterprises create products that can be easily
maintained over time while also being able to scale up or down as needed. Additionally, the language
provides a set of guidelines for designing user interfaces, data models, business processes, and more,
making it an essential toolkit for any organization looking to improve their offerings.

27.8.1 Basic Elements and Interconnections

EDGY is an open-source language for enterprise design that uses only four base elements: people, activity,
object, and outcome. These elements can be specialized into facet and intersection elements, which
describe the enterprise from different perspectives: identity, architecture, and experience.

¢
&« Guide de référence du langage PlantUML (1.2025.0) 546 / 580

27.8 EDGY: An Open Source tool for collaborat3ve HHIBFFRXFHIMQEIE[SBANDARD DE PLANTUML

27.8.2 Elements
The basic syntax of an element or a facet is:

$element/facet ("label", [identifier], [lightColor])

Parameter | Description

label Mandatory: label of the element.

identifier Dependant: Identifies the element (for creating relations). Optional if you don’t link them to other elen

lightColor Optional: 0 sets the standared color. 1 sets a lighter color. As default, facets do have lighter colors thar

O@startuml
linclude <edgy/edgy>

$baseFacet ("Basic elements") {

$people("People")

note bottom
The individuals co-creating
the enterprise or using
products.

end note

$outcome ("Outcome")

note bottom
A result or change that
occurs within our enterprise
or its ecosystem.

end note

$activity("Activity")
note bottom
What is being done or going
on in our enterprise or its
ecosystem.
end note

$object ("Object")
note bottom
A structure that is
relevant to the enterprise.
end note
X

@enduml

Basic elements

0
Object Activity) —

|1
; What is being done or goin A result or change that The individuals co-creatin
A structure that is . 9) 9 9 . 9))) 9
) on in our enterprise or its occurs within our enterprise the enterprise or using
relevant to the enterprise.)
ecosystem. or its ecosystem. products.

§

Guide de référence du langage PlantUML (1.2025.0) 547 / 580

27.8 EDGY: An Open Source tool for collaborat3ve HHIBFFRXFHIMQEIE[SBANDARD DE PLANTUML

27.8.3 Relationships
The elements (or facets) can be connected with three types of relationships: link, flow and tree.

$link/flow/tree(fromIdentifier, toldentifier, ["Description"])
p

Parameter Description

fromldentifier | Mandatory: Identifies the starting element of a relation.
toldentifier Mandatory: Identifies the ending element of a relation.
label Optional: label of the element.

All relations can have a direction hint as a suffix (Up/Down/Left/Right). See examples in the chapter
"Facets”. While it does often help to give PlantUML (basically GraphViz) a direction hint, it not always
helps. if you don’t get the exact result you expect: don’t waste too much lifetime on it.

@startuml

linclude <edgy/edgy>

$outcome ("Outcome", outcome)
$activity("Activity", activity)
$object ("Object", object)

$link(object, activity, "just a link")
$flow(activity, outcome, "a flow with a direction")
$tree(outcome, object, "a hierarchical connection")

@enduml

a hierarchical connection

a flow with a direction

Activity

There are quite some hierarchical linking in edgy. Or maps. So it is also possible to group/nesting
elements:

@startuml
linclude <edgy/edgy>

left to right direction

$activity("Parent Activity") {
$activity("Brother", childl, 1)
$activity("Sister", child2, 1)
$activity("Latecomer", child3, 1)
}

$flow(childl, child2)
$flow(child2, child3)

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 548 / 580

27.8 EDGY: An Open Source tool for collaborat3ve HHIBFFRXFHIMQEIE[SBANDARD DE PLANTUML

Parent Activity

27.8.4 Facets

A facet is a perspective that relates to any enterprise, featuring a set of questions that an enterprise needs
to answer in order to achieve a coherent design. There are three facets in EDGY: Identity, Architecture,
and Experience. Each facet references five enterprise elements: three facet elements, and two intersection
elements at the overlap with the neighbouring facets.

27.8.5 Identity
The Identity Facet describes why the enterprise exists and what it stands for.

@startuml
linclude <edgy/edgy>

$identityFacet(Identity, identity) {
$content (Content, content)

$purpose (Purpose, purpose)
$story(Story, story)

}

$linkLeft(content, purpose)
$linkDown (content, story)
$1linkDown (purpose, story)

Q@enduml

Identity

Purpose —— Content

\/

Story

27.8.6 Architecture

The Architecture facet is about the structures and processes that enable the enterprise to operate and
deliver.

O@startuml
linclude <edgy/edgy>

$architectureFacet (Architecture) {
$process(Process, process)
$asset(Asset, asset)
$capability(Capability, capability)
}

§

Guide de référence du langage PlantUML (1.2025.0) 549 / 580

27.8 EDGY: An Open Source tool for collaborat3ve HHIBFFRXFHIMQEIE[SBANDARD DE PLANTUML

$1linkRight (process, asset)
$1linkDown (process, capability)
$1inkDown (asset, capability)

@enduml

Architecture

Process —— Asset

\/

Capability

27.8.7 Experience

The Experience Facet is about the impact that the enterprise has on people and their lives through its
interactions.

@startuml
linclude <edgy/edgy>

$experienceFacet (Experience) {
$task(Task, task)
$journey(Journey, journey)
$channel (Channel, channel)

3

$1inkRight (task, journey)
$1linkDown(task, channel)
$linkDown (journey, channel)

@enduml

4

Experience

Task Joumey

\/

Channel

27.8.8 Intersections

Intersections are lenses that connect facets and disciplines, such as organisation, product, and brand.
O@startuml

linclude <edgy/edgy>

$experienceFacet (Experience, experience)

§

Guide de référence du langage PlantUML (1.2025.0) 550 / 580

27.8 EDGY: An Open Source tool for collaborat3ve HHIBFFRXFHIMQEIE[SBANDARD DE PLANTUML

$architectureFacet (Architecture, architecture)
$identityFacet(Identity, identity)

$organisationFacet (Organisation, org) {
$organisation(Organisation, organisation)

}

$brandFacet (Brand) {
$brand (Brand, brand)
}

$productFacet (Product) {
$product (Product, product)
}

$flow(brand, identity, "represents/evokes")
$flow(brand, experience, "Supports/appears in")

$flowLeft(organisation, identity, "pursues/authors")
$flowRight (organisation, architecture, "has/performs")

$flow(product, experience, "serves/features in")
$1inkUp(product, architecture, "requires/creates")

$flow(organisation, brand, "builds")
$flow(organisation, product, "makes")

$flowLeft(product, brand, "embodies")

Q@enduml

Organisation

hasfperfcrrms pursues/authors
«— Organisation >
Arch itecture Identity
requires/creates makes |builds represents/evokes
Produc

embodies
Product ——— > Brand

%\:&sﬁeatu res %p ports/appears in

Experience

27.8.9 Alternative visual styling

Finally, there is also an alternative representation that focuses on rectangles with stereotypes. The
approach described above is 100% compatible. It can therefore be activated with a simple swap from
linclude <edgy/edgy> to !include <edgy/edgy2>. This can sometimes be useful if the people involved

§

Guide de référence du langage PlantUML (1.2025.0) 551 / 580

27.9 Elastic library [elastic] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

do not immediately know the color codes and concrete meanings of the EDGY elements by heart. Also
color-blind people can benefit from this ;-)

@startuml
linclude <edgy/edgy2>

$baseFacet ("Basic elements") {
$people("People")
$outcome ("Outcome")
$activity ("Activity")
$object ("Object")

}

@enduml

Basic elements

l &F'BGPIG] I OOLrI.oun'na]
People Outcome

[[Actvity] | [otiect]
Activity Object

27.9 Elastic library [elastic]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/elastic
src https://github.com/Crashedmind /PlantUML-Elastic-icons

orig Elastic

The Elastic library consists of Elastic icons. It is similar in use to the AWS and Azure libraries (it used
the same tool to create them).

Use it by including the file that contains the sprite, eg: !include elastic/elastic_search/elastic_search>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the common.puml file, eg: 'include <elastic/common>, which contains helper
macros defined. With the common.puml imported, you can use the NAME//OF//SPRITE (parameters. . .)
macro.

Example of usage:

@startuml

'include <elastic/common>

linclude <elastic/elasticsearch/elasticsearch>
linclude <elastic/logstash/logstash>

linclude <elastic/kibana/kibana>

ELASTICSEARCH(ElasticSearch, "Search and Analyze",database)
LOGSTASH(Logstash, "Parse and Transform",node)
KIBANA(Kibana, "Visualize",agent)

Logstash -right-> ElasticSearch: Transformed Data
ElasticSearch -right-> Kibana: Data to View
@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 552 / 580

27.9 Elastic library [elastic] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

R — wkibana»
wlogstasfy «elasticsearchy
Transformed Data - Data to View '
Parse and Transform | Search and Analyze | Visualize

All Elastic Sprite Set

@startuml
'Adapted from https://github.com/Crashedmind/PlantUML-Elastic-icons/blob/master/All.puml

'Elastic stuff here

'include <elastic/common>

linclude <elastic/apm/apm>

linclude <elastic/app_search/app_search>

linclude <elastic/beats/beats>

linclude <elastic/cloud/cloud>

'include <elastic/cloud_in_kubernetes/cloud_in_kubernetes>
linclude <elastic/code_search/code_search>

linclude <elastic/ece/ece>

linclude <elastic/eck/eck>

' Beware of the difference between Crashedmind and plantuml-stdlib version: with '_' usage!
linclude <elastic/elasticsearch/elasticsearch>
linclude <elastic/endpoint/endpoint>

linclude <elastic/enterprise_search/enterprise_search>
linclude <elastic/kibana/kibana>

linclude <elastic/logging/logging>

linclude <elastic/logstash/logstash>

linclude <elastic/maps/maps>

linclude <elastic/metrics/metrics>

linclude <elastic/siem/siem>

linclude <elastic/site_search/site_search>

linclude <elastic/stack/stack>

linclude <elastic/uptime/uptime>

skinparam agentBackgroundColor White

APM (apm)

APP_SEARCH (app_search)

BEATS (beats)

CLOUD(cloud)
CLOUD_IN_KUBERNETES(cloud_in_kubernetes)
CODE_SEARCH(code_search)

ECE (ece)

ECK (eck)
ELASTICSEARCH(elastic_search)
ENDPOINT (endpoint)
ENTERPRISE_SEARCH(enterprise_search)
KIBANA (kibana)

LOGGING(logging)

LOGSTASH(logstash)

MAPS (maps)

METRICS (metrics)

§

Guide de référence du langage PlantUML (1.2025.0) 553 / 580

27.10 Google Material Icons [material]

27 BIBLIOTHEQUE STANDARD DE PLANTUML

SIEM(siem)
SITE_SEARCH(site_search)
STACK (stack)
UPTIME (uptime)
@enduml
«apmu «app searchy wbeatsy wcloudy wcloud in kubemetess

=

P

c

Y d

wcode searchy wecen wecky welasticsearchy wendpoints
| ‘0. od =D
wenterprise searchy wkibana» wlogging» wlogstashy» «maps»
ameticss wsiemy wsite searchy wstacky wuplimes

27.10 Google Material Icons [material]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master /material
src https://github.com/Templarian /MaterialDesign

orig Material Design Icons

This library consists of a free Material style icons from Google and other artists.

Use it by including the file that contains the sprite, eg: !include <material/ma_folder_move>. When
imported, you can use the sprite as normally you would, using <$ma_sprite_name>. Notice that this
library requires an ma_ prefix on sprites names, this is to avoid clash of names if multiple sprites have
the same name on different libraries.

You may also include the common.puml file, eg: !include <material/common>, which contains helper

¢
&« Guide de référence du langage PlantUML (1.2025.0)

554 / 580

27.11 Kubernetes [kubernetes] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

macros defined. With the common.puml imported, you can use the MA_NAME_OF _SPRITE(parameters...)
macro, note again the use of the prefix MA_.

Example of usage:

@startuml

linclude <material/common>

' To import the sprite file you DON'T need to place a prefix!
linclude <material/folder_move>

MA_FOLDER_MOVE(Red, 1, dir, rectangle, "A label")

@enduml
«MA FOLDER_MOVE»
A label
Notes:

When mixing sprites macros with other elements you may get a syntax error if, for example, trying to
add a rectangle along with classes. In those cases, add { and } after the macro to create the empty
rectangle.

Example of usage:

@startuml

'include <material/common>

' To import the sprite file you DON'T need to place a prefix!
'include <material/folder_move>

MA_FOLDER_MOVE(Red, 1, dir, rectangle, "A label") {
}

class foo {
bar
}

Q@enduml

«MA FOLDER_MOVEx» (
© foo
bar

A label

27.11 Kubernetes [kubernetes]

Type Link
stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/kubernetes
src https://github.com/michiel /plantuml-kubernetes-sprites
orig Kubernetes
@startuml

linclude <kubernetes/k8s-sprites-unlabeled-25pct>
package "Infrastructure" {
component "<$master>\nmaster" as master
component "<$etcd>\netcd" as etcd
component "<$node>\nnode" as node
X

@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 555 / 580

27.12 Logos [logos] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Infrastructure \
g] g1
master eted
£
node
27.12 Logos [logos]
Type Link
stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/logos
sTc https://github.com/plantuml-stdlib/gilbarbara-plantuml-sprites
orig Gil Barbara’s logos

This repository contains PlantUML sprites generated from Gil Barbara’s logos, which can easily be used
in PlantUML diagrams for nice visual aid.

@startuml

linclude <logos/flask>
linclude <logos/kafka>
linclude <logos/kotlin>
linclude <logos/cassandra>

title Gil Barbara's logos example
skinparam monochrome true

rectangle "<$flask>\nwebapp" as webapp
queue "<$kafka>" as kafka

rectangle "<$kotlin>\ndaemon" as daemon
database "<$cassandra>" as cassandra

webapp -> kafka
kafka -> daemon
daemon —--> cassandra
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 556 / 580

27.12 Logos [logos] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Gil Barbara's logos example

. | |, K Kotlin
Flask ._% T | _.}% e

webapp

__cassandra__

O@startuml

scale 0.7

linclude <logos/apple-pay>
linclude <logos/dinersclub>
linclude <logos/discover>
linclude <logos/google-pay>
linclude <logos/jcb>
linclude <logos/maestro>
linclude <logos/mastercard>
linclude <logos/paypal>
linclude <logos/unionpay>
linclude <logos/visaelectron>
linclude <logos/visa>

title Gil Barbara's logos example - **Payment Schemex*x*

actor customer

rectangle "<$apple-pay>" as ap
rectangle "<$dinersclub>" as dc
rectangle "<$discover>" as d

rectangle "<$google-pay>" as gp
rectangle "<$jcb>" as j

rectangle "<$maestro>" as ma
rectangle "<$mastercard>" as m

rectangle "<$paypal>" as p

rectangle "<$unionpay>" as up
rectangle "<$visa>" as v

rectangle "<$visaelectron>" as ve
rectangle "..." as etc

customer --> ap
customer —---> dc
customer --> d

customer ---> gp
customer --> j
customer —---> ma
customer --> m
customer ---> p
customer --> up
customer ---> v
customer --> ve
customer ---> etc

§

Guide de référence du langage PlantUML (1.2025.0) 557 / 580

27.13 Office [office] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

@enduml

Gil Barbara's logos example - Payment Scheme

l

(D et

27.13 Office [office]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master /office
src https://github.com/Roemer/plantuml-office

orig

There are sprites (*.puml) and colored png icons available. Be aware that the sprites are all only
monochrome even if they have a color in their name (due to automatically generating the files). You can
either color the sprites with the macro (see examples below) or directly use the fully colored pngs. See
the following examples on how to use the sprites, the pngs and the macros.

Example of usage:

O@startuml
linclude <tupadr3/common>

linclude <office/Servers/database_server>
linclude <office/Servers/application_server>
linclude <office/Concepts/firewall_orange>
linclude <office/Clouds/cloud_disaster_red>

title Office Icons Example

package "Sprites" {
OFF _DATABASE_SERVER (db,DB)
OFF_APPLICATION_SERVER (app,App-Server)
OFF_FIREWALL_ORANGE(fw,Firewall)
OFF_CLOUD_DISASTER_RED(cloud,Cloud)

db <-> app

app <--> fw

fw <.left.> cloud
}
Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 558 / 580

27.13 Office [office] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Office lcons Example

Sprites,

E-E
08

App-Server

R -

Cloud Firewall

@startuml
linclude <tupadr3/common>

linclude <office/servers/database_server>
linclude <office/servers/application_server>
linclude <office/Concepts/firewall_orange>
linclude <office/Clouds/cloud_disaster_red>

' Used to center the label under the images
skinparam defaultTextAlignment center

title Extended Office Icons Example

package "Use sprite directly" {
[Some <$cloud_disaster_red> object]

}

package "Different macro usages" {
OFF_CLOUD_DISASTER_RED(cloudi)
OFF_CLOUD_DISASTER_RED(cloud2,Default with text)
OFF_CLOUD_DISASTER_RED(cloud3,0ther shape,Folder)
OFF_CLOUD_DISASTER_RED(cloud4,Even another shape,Database)
OFF_CLOUD_DISASTER_RED(cloud5,Colored,Rectangle, red)
OFF_CLOUD_DISASTER_RED(cloud6,Colored background) #red

}

Q@enduml

§

Guide de référence du langage PlantUML (1.2025.0) 559 / 580

27.14 Open Security Architecture (OSA) osa] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Extended Office lcons Example

Different macro usages
g \ Use sprite directly\
EYE 0N N
A - A some AN object
| Default with text Other shape me opje
L Egenanomershape_ S

27.14 Open Security Architecture (OSA) [osa]

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/osa

src https://github.com/Crashedmind /PlantUML-opensecurityarchitecture-iconshttps: //github.com/Crashedmin

orig https://www.opensecurityarchitecture.org
O@startuml

'Adapted from https://github.com/Crashedmind/PlantUML-opensecurityarchitecture-icons/blob/master/all
scale .5

linclude <osa/arrow/green/left/left>
linclude <osa/arrow/yellow/right/right>
linclude <osa/awareness/awareness>
linclude <osa/contract/contract>

linclude <osa/database/database>

linclude <osa/desktop/desktop>

linclude <osa/desktop/imac/imac>

linclude <osa/device_music/device_music>
linclude <osa/device_scanner/device_scanner>
'include <osa/device_usb/device_usb>
linclude <osa/device_wireless_router/device_wireless_router>
linclude <osa/disposal/disposal>

linclude <osa/drive_optical/drive_optical>
linclude <osa/firewall/firewall>

linclude <osa/hub/hub>

linclude <osa/ics/drive/drive>

linclude <osa/ics/plc/plc>

linclude <osa/ics/thermometer/thermometer>
linclude <osa/id/card/card>

linclude <osa/laptop/laptop>

linclude <osa/lifecycle/lifecycle>
linclude <osa/lightning/lightning>
linclude <osa/media_flash/media_flash>
linclude <osa/media_optical/media_optical>
linclude <osa/media_tape/media_tape>
linclude <osa/mobile/pda/pda>

linclude <osa/padlock/padlock>

linclude <osa/printer/printer>

linclude <osa/site_branch/site_branch>
linclude <osa/site_factory/site_factory>
linclude <osa/vpn/vpn>

§

Guide de référence du langage PlantUML (1.2025.0) 560 / 580

27.14 Open Security Architecture (OSA) osa] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

linclude <osa/wireless/network/network>

rectangle "0SA" {

rectangle "Left:\n <$left>"

rectangle "Right:\n <$right>"

rectangle "Awareness:\n <$awareness>"
rectangle "Contract:\n <$contract>"

rectangle "Database:\n <$database>"

rectangle "Desktop:\n <$desktop>"

rectangle "Imac:\n <$imac>"

rectangle "Device_music:\n <$device_music>"
rectangle "Device_scanner:\n <$device_scanner>"
rectangle "Device_usb:\n <$device_usb>"
rectangle "Device_wireless_router:\n <$device_wireless_router>"
rectangle "Disposal:\n <$disposal>"

rectangle "Drive_optical:\n <$drive_optical>"
rectangle "Firewall:\n <$firewall>"

rectangle "Hub:\n <$hub>"

rectangle "Drive:\n <$drive>"

rectangle "Plc:\n <$plc>"

rectangle "Thermometer:\n <$thermometer>"
rectangle "Card:\n <$card>"

rectangle "Laptop:\n <$laptop>"

rectangle "Lifecycle:\n <$lifecycle>"
rectangle "Lightning:\n <$lightning>"
rectangle "Media_flash:\n <$media_flash>"
rectangle "Media_optical:\n <$media_optical>"
rectangle "Media_tape:\n <$media_tape>"
rectangle "Pda:\n <$pda>"

rectangle "Padlock:\n <$padlock>"

rectangle "Printer:\n <$printer>"

rectangle "Site_branch:\n <$site_branch>"
rectangle "Site_factory:\n <$site_factory>"
rectangle "Vpn:\n <$vpn>"

rectangle "Network:\n <$network>"

¥

@enduml

«
&« Guide de référence du langage PlantUML (1.2025.0) 561 / 580

27.14 Open Security Architecture (OSA) [osa] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

Lt Faght: B
- Q
Imac: Deewice_music: Device_scanner. Dewvice_ush: Device_wirdess_router Drzposat
N E “ i
——
Drive_oplicat Firewail Hub: g Fic
Lifecycle: Lighining: Meda_fash: Media_cplical:
Pty T,
T { ~
‘ /J Oy
Padock: Primar: Site_branchc She_factory:

==y

O@startuml

scale .5

linclude <osa/user/audit/audit>

'beware of 'hat-sprite'

linclude <osa/user/black/hat/hat-sprite>

linclude <osa/user/blue/blue>

linclude <osa/user/blue/security/specialist/specialist>
linclude <osa/user/blue/sysadmin/sysadmin>
linclude <osa/user/blue/tester/tester>

linclude <osa/user/blue/tie/tie>

linclude <osa/user/green/architect/architect>
linclude <osa/user/green/business/manager/manager>
linclude <osa/user/green/developer/developer>
linclude <osa/user/green/green>

linclude <osa/user/green/operations/operations>
linclude <osa/user/green/project/manager/manager>
linclude <osa/user/green/service/manager/manager>
linclude <osa/user/green/warning/warning>
linclude <osa/user/large/group/group>

linclude <osa/users/blue/green/green>

linclude <osa/user/white/hat/hat>

listsprites

§

Guide de référence du langage PlantUML (1.2025.0) 562 / 580

27.15 Tupadr3 library [tupadr3] 27 BIBLIOTHEQUE STANDARD DE PLANTUML

@enduml

nanagar opemations [T FUER
L3
27.15 Tupadr3 library [tupadr3]
Type Link
stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master /tupadr3
src https://github.com/tupadr3/plantuml-icon-font-sprites
orig https://github.com/tupadr3/plantuml-icon-font-sprites#icon-sets

This library contains several libraries of icons (including Devicons and Font Awesome).

Use it by including the file that contains the sprite, eg: !include <font-awesome/align_center>.
When imported, you can use the sprite as normally you would, using <$sprite_name>.

You may also include the common.puml file, eg: !include <font-awesome/common>, which contains
helper macros defined. With the common . puml imported, you can use the NAME_OF_SPRITE (parameters. . .)
macro.

Example of usage:

@startuml

linclude <tupadr3/common>

linclude <tupadr3/font-awesome/server>
linclude <tupadr3/font-awesome/database>

title Styling example

FA_SERVER (webl,webl) #Green
FA_SERVER (web2,web2) #Yellow
FA_SERVER(web3,web3) #Blue
FA_SERVER (web4,web4) #YellowGreen

FA_DATABASE(db1,LIVE,database,white) #RoyalBlue
FA_DATABASE(db2,SPARE,database) #Red

dbl <--> db2

webl <--> dbil
web2 <--> dbil
web3 <--> dbil
web4d <--> dbil

§

Guide de référence du langage PlantUML (1.2025.0) 563 / 580

27.16 Bibliotheque AWS

27 BIBLIOTHEQUE STANDARD DE PLANTUML

@enduml

@startuml

Styling example

linclude <tupadr3/common>
linclude <tupadr3/devicons/mysql>

DEV_MYSQL(db1)

DEV_MYSQL(db2,label of db2)

DEV_MYSQL (db3,label of db3,database)
DEV_MYSQL(db4,label of db4,database,red) #DeepSkyBlue

@enduml

_label of db3 _

27.16 Bibliotheque AWS

Type Link

stdlib | https://github.com/plantuml/plantuml-stdlib/tree/master/aws
src https://github.com/milo-minderbinder/ AWS-PlantUML

orig https://aws.amazon.com/en/architecture/icons/

Warning: We are thinking about deprecating this library.

So you should probably use <awslib> instead (see above).

§

Guide de référence du langage PlantUML (1.2025.0)

564 / 580

27.16 Bibliotheque AWS 27 BIBLIOTHEQUE STANDARD DE PLANTUML

hr
La bibliotheque AWS est composée des icones AWS en deux tailles différentes.

Pour l'utiliser, il vous vaut inclure le ficheier qui contient le sprite (ex: !include <aws/Storage/AmazonS3/AmazonS3>).
Une fois importé, vous pouvez utiliser le sprite normallement en ’appelant de la maniére suivante
<$nom_du_sprite>.

Vous pouvez aussi inclure le fichier common.puml qui contient plusieurs macros utiles avec la com-
mande !include <aws/common>. Avec ce fichier importé, vous pouvez par exmeple appeler la macro
"NOM__DU_ SPRITE(parametres...).

Exemple d’utilisation :

@startuml

linclude <aws/common>

linclude <aws/Storage/AmazonS3/AmazonS3>
linclude <aws/Storage/AmazonS3/bucket/bucket>

AMAZONS3(s3_internal)
AMAZONS3(s3_partner,"Vendor's S3")
s3_internal <- s3_partner

@enduml
/«Amazons3y), [*AmazonSi»?\
S e '-\Yfendofs 83/

3

Guide de référence du langage PlantUML (1.2025.0) 565 / 580

CONTENTS CONTENTS

Contents

1 Diagramme de séquence 1
1.1 Exemplesde base 1
1.2 Déclaration d’un participant L e e 2
1.3 Déclaration des participants sur plusieurs lignes L. 4
1.4 Caracteres non alphanumérique dans les participants 4
1.5 Message a SOI-MEME o oL e e e e 5
1.6 Alignement du texte 5
1.6.1 Texte du message de réponse sous la fleche 5
1.7 Autre stylede fleches 6
1.8 Changer la couleur des fleches L L o 6
1.9 Numérotation séquentielle des messages 7
1.10 Titre, en-téte et pied de pagedelapage 10
1.11 Découper un diagramimet e e e e 11
1.12 Regrouper les messages (cadres UML) 11
1.13 Etiquette secondaire de groupeo 12
1.14 Note sur les messages o o v i i e e e e e e 13
1.15 Encore plus de notes oL 14
1.16 Changer 'aspect des notes e 15
1.17 Note sur tous les participants [travers] L L 15
1.18 Plusieurs notes alignées au méme niveau [/] Lo L. 16
1.19 Créole (langage de balisage léger) et HTML 17
1.20 Diviseur ou séparateur e e e 18
1.21 Référence e 18
1.22 Retard e 19
1.23 Habillage du texte e 19
1.24 Séparation verticale 20
1.25 Lignes de vie e 20
1.26 Retour o o o e e 22
1.27 Création d’un participant 22
1.28 Syntaxe raccourcie pour l'activation, la désactivation, la création 23
1.29 Messages entrant et sortant Lo 24
1.30 Fleches courtes pour les messages entrants et sortants 25
1.31 Anchors and Duration 26
1.32 Stéréotypes et décoration 27
1.33 Position of the stereotypes L L 28
1.33.1 Top postion (by default) 28
1.33.2 Bottom postion L e 28
1.34 Plus d’information sur les titres 28
1.35 Cadre pour les participants e 30
1.36 Supprimer les participants en pied de page 30
1.37 Personnalisation L 30
1.38 Changer le padding e 33
1.39 Appendix: Examples of all arrow type 33
1.39.1 Normal arrow o e e 33
1.39.2 Itself arrow L 34
1.39.3 Incoming and outgoing messages (with ’[", ’]") 36
1.39.4 Incoming messages (with '[’) Lo 36
1.39.5 Outgoing messages (with ’]’) L 38
1.39.6 Short incoming and outgoing messages (with ’?7) 39
1.39.7 Short incoming (with *?7) L 39
1.39.8 Short outgoing (with *?7) L 40
1.40 SkinParameter spécifique 41
1.40.1 Pardéfaut e 41
1.40.2 LifelineStrategy e e 42
1.40.3 style strictuml oo 42
1.41 Masquer un participant non liéo oL Lo 43

«

Guide de référence du langage PlantUML (1.2025.0) 566 / 580

CONTENTS CONTENTS

1.42 Colorier un groupe de MeSSae« « v v vttt e e e e e 43
1.43 Mainframe oL e 44
1.44 Slanted or odd arrows L e e 44
1.45 Parallel messages (with teoz) 46
2 Diagramme de cas d’utilisation 47
2.1 Cas d’utilisation 47
2.2 Acteurs e e e 47
2.3 Changer le style d’acteur L L 48
2.3.1 Stick man (par défaut) Lo 48
2.3.2 Homme CTeUX v v v i i it e e e 49

2.4 Description des cas d’utilisationo L Lo 49
2.5 Utiliser un package e 50
2.6 Exemples tres simples 51
2.7 Héritage e 52
2.8 Notes e e 52
2.9 SHEréotypes e 53
2.10 Changer les directions des fleches oo 53
2.11 Découper les diagrameso 54
2.12 Dedroite a gauche 95
2.13 La commande Skinparam 56
2.14 Exemple completo 56
2.15 Business Use Case e e e e 57
2.15.1 Business Use Case 0 0 i i i e e e 57
2.15.2 Acteur commercial 57

2.16 Modifier la couleur et le style des fleches (style en ligne) 58
2.17 Modifier la couleur et le style d’un élément (style en ligne) 58
2.18 Afficher les données JSON sur le diagramme Usecase 59
2.18.1 Exemple simple 59

3 Diagramme de classes 60
3.1 Elément déclaratif 60
3.2 Relations entre classes L 61
3.3 Libellés sur les relationso 62
3.4 Caractéres non alphabétiques dans les noms d’éléments et les étiquettes de relations . . . 63
3.4.1 Commencer un nom avec $ e 63

3.5 Ajouter des méthodes 63
3.6 Définition de la visibilité L 64
3.7 Abstrait et statique L e 66
3.8 Corpsdeclasse avancéo e e 66
3.9 Notes et stéréotypes L e 67
3.10 Plusdemnotes oL 68
3.11 Note sur un champ (champ, attribut, membre) ou une méthode 69
3.11.1 Note sur un champ ou une méthode 69
3.11.2 Note sur une méthode de méme nom 69

3.12 Notesur les liens o e 70
3.13 Classe et interface abstraites. L L 70
3.14 Masquer les attributs et les méthodes L 71
3.15 Masquer les classes L 72
3.16 Supprimer des classes e e e e e e 73
3.17 Hide, Remove or Restore tagged element or wildcard 73
3.18 Masquer ou supprimer une classe non liée Lo 75
3.19 Utilisation de la généricité 76
3.20 Caractére spécial L 76
3.21 Packages e 76
3.22 Modele de paquet e 77
3.23 Les espaces de nOmMmage e e e e e e 78
3.24 Creation automatique d’espace de nommage 79
3.25 Interface boucle e e 80

«
&« Guide de référence du langage PlantUML (1.2025.0) 567 / 580

CONTENTS CONTENTS

3.26 Changer la direction 80
3.27 Classes d’association oL e 82
3.28 Association sur la méme classe Lo 83
3.29 Personnalisation L 83
3.30 Stéréotypes Personnaliséso 84
3.31 Dégradé de couleurs 85
3.32 Aide pour la mise en page e 85
3.33 Découper les grands diagrammes oL Lo e e 86
3.34 Extension et implementation [extends, implements] 0oL 87
3.35 Relations entre crochets (liens ou fleches) style 87
3.35.1 Styledeligne 87
3.35.2 Couleur de ligne L 88
3.35.3 Epaisseur de ligne 89
3.35.4 Mélange e 90

3.36 Modifier la couleur et le style d’une relation (lien ou fleche) (style en ligne) 90
3.37 Modifier la couleur et le style d’une classe (style en ligne) 91
3.38 Fleches de/vers les membres de laclasse Lo Lo L. 92
3.39 Regroupement de fleche d’héritageo L 93
3.39.1 GroupInheritance 1 (pas de regroupement) 93
3.39.2 Grouplnheritance 2 (regroupement & partirde 2) 93
3.39.3 Grouplnheritance 3 (regroupement uniquement & partirde 3) 94
3.39.4 Grouplnheritance 4 (regroupement uniquement & partirde 4) 94

3.40 Display JSON Data on Class or Object diagram 95
3.40.1 Simple example e 95

3.41 Packages and Namespaces Enhancement 96
3.42 Qualified associations e e 97
3.42.1 Minimal exampleo 97
3.42.2 Another example 97

3.43 Change diagram orientation L L e 97
3.43.1 Top to bottom (by default) 97
3.43.2 With Graphviz (layout engine by default) 97
3.43.3 With Smetana (internal layout engine) L. 98
3434 Left toright L 99
3.43.5 With Graphviz (layout engine by default) 99
3.43.6 With Smetana (internal layout engine) L. 102

4 Diagramme d’objets 104
4.1 Définition des objets L L 104
4.2 Relations entre les objets L 104
4.3 Association d’objects 105
4.4 Ajout dechamps 105
4.5 Caractéristiques communes avec les diagrammes de classes 106
4.6 Table de correspondance ou tableau associatif 0oL 106
4.7 Program (or project) evaluation and review technique (PERT) with map 108
4.8 Display JSON Data on Class or Object diagram 109
4.8.1 Simpleexample 109

5 Diagrammes d’activité (ancienne syntaxe) 110
5.1 Action simple 110
5.2 Textesurles fleches 110
5.3 Changer la direction des fleches Lo oo 111
5.4 Branches. e 111
5.5 Encore des branches 112
5.6 Synchronisation L L 113
5.7 Description détaillée 114
5.8 Notes e 115
5.9 Partition. L e e 115
5.10 Parametre de themeo 116
5.11 Octogone o .o e e 117

«
&« Guide de référence du langage PlantUML (1.2025.0) 568 / 580

CONTENTS CONTENTS

5.12 Exemple completo 117
6 Diagramme d’activité (nouvelle syntaxe) 120
6.0.1 Avantages de la nouvelle syntaxe oL 120
6.0.2 Transition vers la nouvelle syntaxe Lo 120

6.1 Action simple L e e 120
6.2 Départ/Arrét [start, stop, end] Lo 120
6.3 Conditionnel [if, then, else] 121
6.3.1 Plusieurs conditions (en mode horizontal) 122
6.3.2 Plusieurs conditions (en mode vertical) 0 L. 123

6.4 Switch and case [switch, case, endswitch] L oL oL oL 124
6.5 Arrét apres une action au sein d’une condition [kill, detach] L. 125
6.6 Boucle de répétition [repeat, repeatwhile, backward] 0oL 126
6.7 Interruption d’'une boucle [break] Lo Lo 127
6.8 Goto and Label Processing [label, goto] o L. 128
6.9 Boucle « tant que » [while] Lo 129
6.10 Traitement paralléle [fork, fork again, end fork, end merge] 130
6.10.1 Simple fork e 130
6.10.2 fork avec fusion finale 130
6.10.3 Label sur end fork (ou UML joinspec) 131
6.10.4 Autre exemple L 132

6.11 Traitement fractionné L 133
6.11.1 Split e e e 133
6.11.2 Fractionnement de entrée (multidébut) 133
6.11.3 Fractionnement de la sortie (plusieurs extrémités) 134

6.12 Notes o e e 135
6.13 Couleurs L e e 137
6.14 Lignes sans pointe de fleches 138
6.15 Fleches e 138
6.16 Connecteurs L e e 139
6.17 Connecteurs en couleur Lo 139
6.18 Regroupement ou partition L L Lo 140
6.18.1 Groupe o e e 140
6.18.2 Partition L 141
6.18.3 Groupe, partition, paquet, rectangle ou carte L. 143

6.19 Swimlanes L 144
6.20 Détacher ou arréter [detach, kill] o Lo Lo 147
6.21 SDL (Specification and Description Language) 148
6.22 Exemple complet oL 149
6.23 Style de condition 151
6.23.1 Style intérieur (par défaut)o Lo 151
6.23.2 Style diamanto 152
6.23.3 Style InsideDiamond (ou Fool) 153

6.24 Style de fin de condition Lo 154
6.24.1 Style diamant (par défaut)o 154
6.24.2 Style ligne horizontale (hline) Lo o 155

6.25 Avec le style (global) 156
6.25.1 Sans style (par défaut) 156
6.25.2 Avec style e 156

7 Diagramme de composants 159
7.1 Composants e e 159
7.2 Inmterfaces e 159
7.3 Exemplede base e 160
7.4 Utilisation des notes 160
7.5 Regroupement de composants Lo 161
7.6 Changement de direction des fleches oL oo 162
7.7 Utiliser la notation UML2 L 164
7.8 Utiliser la notation UML1 o e 164

«
&« Guide de référence du langage PlantUML (1.2025.0) 569 / 580

CONTENTS CONTENTS

7.9 Utiliser le style rectangle (supprime toute notation UML) 164
7.10 Description longue oL L e 165
7.11 Couleurs individuelles 165
7.12 Sprites et stéréotypes L e 165
713 Skinparam e e e e 166
7.14 Parametre de style spécifique Lo 167
7.14.1 componentStyle 167
7.15 Masquer ou supprimer un composant non lié oL oL, 169
7.16 Masquer, supprimer ou restaurer un composant balisé ou un joker 170
7.17 Display JSON Data on Component diagram 171
7.17.1 Simple exampleo Lo 171
7.18 Port [port, portIn, portOut] 172
TA8.1 Port . . . oo e 172
7.18.2 PortIn e e e e 173
7.18.3 PortOut e e e e e 173
7.18.4 Mixing Portln & PortOut 174
8 Diagramme de déploiement 176
8.1 Déclarer un élément L 176
8.2 Declaring element (using short form) Lo Lo Lo 178
8.2.1 Actor . ..o 178
8.2.2 Component e 179
8.2.3 Imterface e 179
8.2.4 USECASE v o e e e 179
8.3 Linking or arrow e 179
8.4 Bracketed arrow style 182
8.4.1 Linestyle e e 182
8.4.2 Linecolor e e e e 183
8.4.3 Line thickness. e 183
4.4 MiX 184
8.5 Change arrow color and style (inline style) 184
8.6 Change element color and style (inline style) 185
8.7 Nestable elements L L 186
8.8 Packages and nested elements 186
8.8.1 Example with one level 186
8.8.2 Other example L 187
8.8.3 Fullmesting L 188
8.9 Allas e 193
8.9.1 Simple alias withas 193
8.9.2 Examples of long alias L L 193
8.10 Round corner 195
8.11 Specific SkinParameter Lo 195
8.11.1 roundCorner e 195
8.12 Appendix: All type of arrow line L 196
8.13 Appendix: All type of arrow head or 0" arrow 197
8.13.1 Type of arrow head L 197
8.13.2 Type of 0’ arrow or circle arrow Lo 198
8.14 Appendix: Test of inline style on all element 199
8.14.1 Simple element L 199
8.14.2 Nested element L 200
8.14.3 Without sub-element 200
8.14.4 With sub-element L 201
8.15 Appendix: Test of style on all element L 202
8.15.1 Simple element 202
8.15.2 Global style (on componentDiagram)o 202
8.15.3 Style for each elemento 203
8.15.4 Nested element (without level) L. 207
8.15.5 Global style (on componentDiagram) 207

«

Guide de référence du langage PlantUML (1.2025.0) 570 / 580

CONTENTS CONTENTS

8.15.6 Style for each nested element L L 208
8.15.7 Nested element (withonelevel) 210
8.15.8 Global style (on componentDiagram) 210
8.15.9 Style for each nested element Lo 211
8.16 Appendix: Test of stereotype with style on all element 213
8.16.1 Simple element L 213
8.17 Display JSON Data on Deployment diagram 215
8.17.1 Simple example L. 215
8.18 Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object
diagramo e e 215
8.18.1 Mixing all elements L 215
8.19 Port [port, portIn, portOut] 217
8.19.1 Port . . . o o e 217
8.19.2 PortIn e 218
8.19.3 PortOut 218
8.19.4 Mixing Portln & PortOut 219
8.20 Change diagram orientation 220
8.20.1 Top to bottom (by default) 220
8.20.2 With Graphviz (layout engine by default) 220
8.20.3 With Smetana (internal layout engine) L. 221
8.20.4 Left toright e 222
8.20.5 With Graphviz (layout engine by default) 222
8.20.6 With Smetana (internal layout engine) L. 223
9 Diagramme d’état 225
9.1 Exemplesimple oL e e 225
9.2 Autrerendu e 225
9.3 Etat compoSiteo 226
9.3.1 Sous-état interne L 226
9.3.2 Lien entre sous-états 227
9.4 Nom long e e 228
9.5 Historique de sous-état [H], [H*]] 229
9.6 Etats paralleles [fork, join] 229
9.7 Etats concurrents [, ||| 230
9.7.1 Séparateur horizontal —— 230
9.7.2 Séparateur vertical || 231
9.8 Conditionnel [choice] L 232
9.9 Exemple avec tous les stéréotypes [choice, fork, join, end] 232
9.10 Petits cercles [entryPoint, exitPoint] Lo Lo o 234
9.11 Petits carrés [inputPin, outputPin] Lo Lo 234
9.12 Multiples petits carrés [expansionInput, expansionOutput] 235
9.13 Direction des fleches 236
9.14 Changer la couleur ou le style des fleches L. 237
9.15 Note . . . o o o e 237
9.16 Note sur un lien L 238
9.17 Plusdenotes e 238
9.18 Changer les couleurs localement [Inline color] 239
9.19 Skinparam L. e e e e 240
9.19.1 Test de tous les skinparam spécifiques aux diagrammes d’état: 241
9.20 Changement de style L e 241
9.21 Modifier la couleur et le style d’un état (style en ligne) 242
0.22 Alias e 244
9.23 Display JSON Data on State diagram 245
9.23.1 Simple example 245
9.24 State description L L L 245
9.25 Style for Nested State Body 246
10 Diagramme de temps 247
10.1 Définitions des participants 247
«

Guide de référence du langage PlantUML (1.2025.0) 571 / 580

CONTENTS CONTENTS

10.2 Horloge et signaux binaires L oL 247
10.3 Ajout de messageso u e e e 248
10.4 Référence relative de temps oL 248
10.5 Points d’ancrage oL e e 249
10.6 Définition participant par participant oL 250
10.7 Choix du zoom L e e 250
10.8 Etat initialo 251
10.9 Etat complexe 251
10.10Hidden state L 252
10.11Masquer 'axe du temps L 252
10.12Utilisation de 'heure et de ladate o 253
10.13Change Date Format e 254
10.14Manage time axis labels L 254
10.14.1 Label on each tick (by default) 254
10.14.2 Manual label (only when the state changes) 255
10.15Ajout de contrainteso e 256
10.16Période surlignée L 256
10.17Using noteso e e e e e 257
10.18Ajout de textes e 258
10.19Exemple complet L 259
10.20Exemple numérique oL 260
10.21Ajout de couleur 261
10.22Using (global) style L 262
10.22.1 Without style (by default) 262
10.22.2With style o o 262
10.23Applying Colors to specific lines L 263
10.24Compact mode e 264
10.24.1By default oL 264
10.24.2 Global mode with mode compact 265
10.24.3 Local mode with only compact onelement. 265
10.25Scaling analog signal L 266
10.25.1 Without scaling: 0-max (by default) 266
10.25.2With scaling: min-max Lo 267
10.26Customise analog signalo 267
10.26.1 Without any customisation (by default) 267
10.26.2 With customisation (on scale, ticks and height) 268
10.270rder state of robust signal oL oL 268
10.27.1 Without order (by default) 268
10.27.2With order oL e 269
10.27.3With order and label L L 269
10.28Defining a timing diagram oL L 270
10.28.1By Clock (@clk) e 270
10.28.2By Signal (@S) 270
10.28.3By Time (@time) e 271
10.29 Annotate signal with commento oL oL oL 272
11 Display JSON Data 274
11.1 Complex example L e 274
11.2 Highlight parts e 275
11.3 Using different styles for highlight 275
11.4 JSON basic element 276
11.4.1 Synthesis of all JSON basic element 276
11.5 JSON array or table 277
11.5.1 Array type . . . o o o o e e e 277
11.5.2 Minimal array or table L Lo 278
11.5.3 Number array« oL e e e 278
11.5.4 String array e e e 278
11.5.5 Boolean array e 278

«

Guide de référence du langage PlantUML (1.2025.0) 572 / 580

CONTENTS CONTENTS

11.6 JSON numbers o e 278
11.7 JSON strings o oo 279
11.7.1 JSON Unicode e 279
11.7.2 JSON two-character escape sequence o v v v it 279
11.8 Minimal JSON examples e 280
11.9 Empty table or list L 281
11.10Using (global) style L L 281
11.10.1 Without style (by default) 281
11.10.2With style o . o o e 282
11.11Display JSON Data on Class or Object diagram 283
11.11.1Simple example oL 283
11.11.2 Complex example: with all JSON basic element 283
11.12Display JSON Data on Deployment (Usecase, Component, Deployment) diagram 284
11.12.1Simple example 284
11.13Display JSON Data on State diagram 285
11.13.1Simple example 285
11.14Creole on JSON o L e 286
12 Display YAML Data 288
12.1 Complex example oL e 288
12.2 Specific key (with symbols or unicode) oo 289
12.3 Highlight parts e 289
12.3.1 Normal style e 289
12.3.2 Customised style e 290
12.4 Using different styles for highlight 290
12.5 Using (global) style 291
12.5.1 Without style (by default) 291
12.5.2 With style o o e 292
12.6 Creole on YAML e 293
13 Diagramme de réseau avec nwdiag 295
13.1 Diagramme simple oL e 295
13.1.1 Définir un réseauo 295
13.1.2 Définir certains éléments ou serveurs sur un réseau 295
13.1.3 Exemple complet 295
13.2 Define multiple addresses 296
13.3 Grouping nodes e 297
13.3.1 Define group inside network definitions 297
13.3.2 Define group outside of network definitions L. 298
13.3.3 Define several groups on same networko 298
13.3.4 Example with 2 group L 298
13.3.5 Example with 3 groups e 299
13.4 Extended Syntax (for network or group)o o 300
13.4.1 Network 300
13.4.2 Group e 301
13.5 Using Sprites o o 302
13.6 Using Openlconic o oo 303
13.7 Same nodes on more than two networks L. 304
13.8 Peer networks 305
13.9 Peer networks and groupo 305
13.9.1 Without group e 305
13.9.2 Group on first 306
13.9.3 Group on secondo e e 307
13.9.4 Group on third 308
13.10Add title, caption, header, footer or legend on network diagram 309
13.11With or without shadow L 310
13.11.1 With shadow (by default) oL 310
13.11.2Without shadow L 310
13.12Change width of the networks Lo 311
«

Guide de référence du langage PlantUML (1.2025.0) 573 / 580

CONTENTS CONTENTS

13.12.1First example L. 311
13.12.2Second example e 313
13.130ther internal networks 317
13.14Using (global) style 319
13.14.1 Without style (by default) 319
13.14.2With style o L e 320
13.15Appendix: Test of all shapes on Network diagram (nwdiag) 321
14 Salt (Wireframe) 324
14.1 Composants de base L 324
14.2 Text area L e e e e e 324
14.3 Ouvrir, fermer une liste déroulante 325
14.4 Utilisation de la grille [| et #, 1, -, 4] . .« o o o o 326
14.5 Regroupement de champs L 326
14.6 Utilisation des séparateurs Lo 327
14.7 Arbre (structure arborescente) [T] L L 327
14.8 Arbre et Tableau [T] o o 328
14.9 Accolades délimitantes [{, }] 329
14.10Ajout d’onglet [/] 329
14.11Utilisation de menu [*] 330
14.12Tableaux avancés e e e e 332
14.13Barres de défilement [S, SI, S-] 332
14.14C0uleurso 333
14.15Creole on Salt 333
14.16Pseudo sprite [«, »] e 335
14.170penlconico 336
14.18 Ajouter un titre, un en-téte, un pied de page, une légende 336
14.19Zoom, DPIT e e 337
14.19.1Sans zoom (par défaut) L 337
14.19.2Scale L e 337
14.19.3DPL . . o o e 338
14.20Include Salt ”on activity diagram” L oL 338
14.21Include salt “on while condition of activity diagram” 340
14.22Include salt “on repeat while condition of activity diagram” 341
14.23Skinparam L e e e 342
14.24Style o 343
15 ArchiMate 344
15.1 Mot-clé Archimate e 344
15.2 Jonctions Archimate L 344
15.3 Exemple 1 L e 345
15.4 Exemple 2 o L L e e 346
15.5 Liste des sprites possibles L 347
15.6 ArchiMate Macros 347
15.6.1 Archimate Macros and Library 347
15.6.2 Archimate elements 347
15.6.3 Archimate relationships o 348
15.6.4 Appendice: Examples of all Archimate RelationTypes 349

16 Diagramme de Gantt 353
16.1 Déclaration des taches L 353
16.1.1 Charge de travail L e 353
16.1.2 Start e 354
16.1.3 Fin o o e 354
16.1.4 Début/Fin 355

16.2 Déclaration sur une ligne (avec la conjonctionet) L. 355
16.3 Ajout de contraintes e 355
16.4 Noms courts o o v i i e e e e 356
16.5 Tasks with same name L 356

«
&« Guide de référence du langage PlantUML (1.2025.0) 574 / 580

CONTENTS CONTENTS

16.6 Personnaliser les couleurs 357
16.7 Etat d’achevement o o 357
16.7.1 Ajout du pourcentage d’achevement selon L. 357
16.7.2 Changer la couleur de 'achévement (par style) 357
16.8 Jalon e e e e 358
16.8.1 Jalon relatif (utilisation de contraintes) 359
16.8.2 Jalon absolu (utilisation d’une date fixe) L. 359
16.8.3 Jalon de fin de tAches maximum 359
16.9 Hyperliens 0 o 359
16.10Calendrier L e e e e 360
16.11Journées en couleur e 360
16.12Changement d’échelle L 360
16.12.1Daily (par défaut) 361
16.12.2Hebdomadaire L 361
16.12.3Mensuel e 362
16.12.4 Trimestriel e 362
16.12.5 Annuel e 363
16.13Zoom (exemple pour toute Péchelle) L oL oL 363
16.13.1 Zoom sur D’échelle hebdomadaire 363
16.13.25anS ZOOIMo e 363
16.13.3AVEC ZOOIMI v . v e e e e 363
16.13.4 Zoom sur l’échelle hebdomadaire 364
16.13.58an8 0O e 364
16.13.6 Avec zoom e e 364
16.13.7 Zoom sur D’échelle mensuelle L 365
16.13.85an8 200OM e e e e e e 365
16.13.9AVEC ZOOIML e 365
16.13.1%oom sur D’échelle trimestrielle 365
16.13.1Bans zoom e e e e 365
16.13.12AveC ZOOML e 366
16.13.1Zoom sur D’échelle annuelle 366
16.13.16ans ZOOIM e 366
16.13.15AveC 20OML e 366
16.14Weekscale with Weeknumbers or Calendar Date 367
16.14.1 With Weeknumbers (by default) o 367
16.14.2 With Weeknumbers (starting from 1) oo 367
16.14.3 With Calendar Date e 367
16.15Jour non travaillé e 368
16.16Définition d’une semaine en fonction des jours fermés 368
16.17Working days e e e 369
16.18Succession de taches simplifiée 369
16.19Travailler avec des reSSOUrCeS v v v v v v i e e e e e e e e e e e 370
16.20Hide resourceso e e 371
16.20.1 Without any hiding (by default) 371
16.20.2 Hide resources nameso e e e e e e e e e e e e 371
16.20.3 Hide resources footbox 371
16.20.4 Hide the both (resources names and resources footbox) 372
16.21Séparateur horizontal Lo 372
16.22Vertical Separator L L 372
16.23Exemple complexe e 373
16.24Comments e 373
16.25Avec style o oL 373
16.25.1 Sans style (par défaut) L 373
16.25.2 Avec style L 374
16.25.3 Avec style (exemple complet) oo L 375
16.25.4Nettoyer le style e 377
16.26Ajouter des noteso e 378
16.27Pause des taches e e 380
«

Guide de référence du langage PlantUML (1.2025.0) 575 / 580

CONTENTS CONTENTS

16.28Modifier les couleurs des liens L. 381
16.29T4aches ou jalons sur la méme ligne L L oo 382
16.30Mise en avant aujourd’hui Lo L 382
16.31T4che entre deux jalons L e 382
16.32Grammar and verbal formo L 383
16.33Ajouter un titre, un en-téte, un pied de page, une légende ou une légende 383
16.34Add color on legend 383
16.35Suppression des boites de pied (exemple pour toutes les échelles) 384
16.36Langue du calendrier L 386
16.36.1 English (en, par défaut) 386
16.36.2 Allemand (de) 386
16.36.3Japonais (Ja) 387
16.36.4Chinois (zh) 387
16.36.5Coréen (KO) o o e 387
16.37Supprimer des taches ou des jalons oL 388
16.38Start a project, a task or a milestone a number of days before or after today 388
16.39Change Label position L 389
16.39.1 The labels are near elements (by default). 389
16.39.2Label on first column 389
16.39.3Label on last column 390
17 MindMap 392
17.1 Syntaxe OrgMode e 392
17.2 Syntaxe Markdown L. 393
17.3 Notation arithmétique [+, -] L 393
17.4 Multilignes L e 394
17.5 Multiroot Mindmap L e 395
17.6 Couleurs e e 395
17.6.1 Avec couleur en ligne Lo 395
17.6.2 Aveccouleurdestyle L 396
17.7 Masquer les bordures [_]. L 398
17.8 Diagramme multi-directionnelo Lo 399
17.9 Change (whole) diagram orientation 400
17.9.1 Left to right direction (by default) 400
17.9.2 Top to bottom direction 400
17.9.3 Right to left direction L 401
17.9.4 Bottom to top direction L 401
17.10Exemple complet L 401
17.11Changement de style L e 402
17.11.1nceud, profondeur 402
17.11.2sans boite L 403
17.12Word Wrap o o o e e 404
17.13Creole on Mindmap diagram L 405
18 Structure de répartition du travail (WBS) 408
18.1 Syntaxe OrgMode L 408
18.2 Changement de direction [<, >] L 409
18.3 Notation arithmétique [+, -] o 409
18.4 Multi-lignes 410
18.5 Masquer les bordures [_]. L 410
18.6 Colors (with inline or style color) L 411
18.7 Using style o e e 413
18.8 Word Wrap L e 414
18.9 Add arrows between WBS elements Lo 415
18.10Creole on WBS diagram L e 416
19 Mathématiques 419
19.1 Diagramme indépendant 420
19.2 Comment cela fonctionne 7 Lo 420
«

Guide de référence du langage PlantUML (1.2025.0) 576 / 580

CONTENTS CONTENTS

20 Information Engineering Diagrams 421
20.1 Information Engineering Relations L oo 421
20.2 Entitieso e e 421
20.3 Complete Example 422

21 Commandes communes dans PlantUML 425

21.0.1 Global Elements 425
21.0.2 Description de la syntaxe créoleo o o 425
21.0.3 Commande de controle dustyle L Lo 425
21.1 Comments L e e e e 425
21.1.1 Simple comment 425
21.1.2 Block comment 425
21.1.3 Full example e 426
21.2 Z00M e 426
21.3 Title o e 427
21.4 Caption e 428
21.5 Footer and header 428
21.6 Legend the diagram 429
21.7 Appendix: Examples on all diagram 429
21.7.1 Activity 429
21.7.2 Archimate 430
21.7.3 Class o o i 431
21.7.4 Component, Deployment, Use-Case 431
21.7.5 Gantt project planning L 432
21.7.6 Object e 432
21.7.7 MindMapo e 433
21.7.8 Network (nwdiag) 434
21.7.9 Sequence e e e 434
21.7.10State e e e e e e e 435
21.711TIMING . . . o o e e e e 436
21.7.12Work Breakdown Structure (WBS) o oL 436
21.7.13Wireframe (SALT) 437
21.8 Appendix: Examples on all diagram with style 438
21.8.1 Activity e 438
21.8.2 Archimate L 440
21.8.3 Class o e 441
21.8.4 Component, Deployment, Use-Case 443
21.8.5 Gantt project planningo 444
21.8.6 ODJECE « o o o e e 446
21.8.7 MindMap 447
21.8.8 Network (nwdiag) 448
21.8.9 Sequence e e 450
21.8.10State e 451
21.8.11TIming e e 453
21.8.12Work Breakdown Structure (WBS) Lo 454
21.8. 13 Wireframe (SALT) e 455
21.9 Mainframe e 456
21.10Appendix: Examples of Mainframe on all diagram 457
21.10. 1 Activity . . . o L 457
21.10.2 Archimate e 457
21.10.3C1aSS oo e 458
21.10.4 Component, Deployment, Use-Case 458
21.10.5 Gantt project planning 458
21.10.6 Object e 459
21.10.7MindMap e e 459
21.10.8 Network (nwdiag) 459
21.10.9Sequence e e 460
21.10.00tate oL 460
«

Guide de référence du langage PlantUML (1.2025.0) 577 / 580

CONTENTS CONTENTS

21.10.1TmMING . . . o L e e 460
21.10.12Vork Breakdown Structure (WBS) Lo oL 461
21.10.130ireframe (SALT) oo e 461
21.11Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram 462
21111 Activity . . . o o e 462
21.11.2 Archimate L 462
21.11.3C1aSS . . v v o 463
21.11.4 Component, Deployment, Use-Case 464
21.11.5Gantt project planning 464
21.11.6 Object e 465
21117 MindMap e e 466
21.11.8 Network (nwdiag) 466
21.11.98equence e 467
2111 10tate e e e 468
2111 1T0mMING . . . o o e 468
21.11.1%Work Breakdown Structure (WBS) Lo L 469
21.11.13Wireframe (SALT) o o 470

22 Créole 472
22.1 Texte mis en évidence L L 472
22.2 Listes e e e e 472
22.3 Caractere d’échappement L L 473
22.4 Entétes o e e 473
225 Emojio 474
22.5.1 Unicode block 26 475

22.6 Lignes horizontales 475
22.7 Tinks L 476
22.8 Code e 476
22.9 Tableau e 477
22.9.1 Créer un tableau 477
22.9.2 Ajouter une couleur sur les lignes ou les cellules 478
22.9.3 Ajouter une couleur sur la bordure et le texteo Lo 478
22.9.4 Pas de bordure ou méme couleur que le fond 478
2295 En-téteen grasoumnonl o 479
22.10Arbre 479
22.11Caracteres Speciatux o .. u e e e e e 481
22.12Tag HTML o o e 481
22.12.1 Common HTML element 482
22.12.2 Subscript and Superscript element [sub, sup]o oL 483
22.130penlconic e 483
22.14Annexe : Exemples de ” liste créole ” sur tous les diagrammes 484
22.14. 1T Activité e 484
22.14.2C1aSS€ . . . oo e e 485
22.14.3 Composant, Déploiement, Cas d’utilisation 486
22.14.4 Planification de projet Gantt L oL o o 487
22.14.50Dbject 487
22.14.6 MindMapo e 488
22.14.7Réseau (nwdiag) 488
22.14.8Note . . o o o e 489
22.14.9Sequence e e 489
22.14.1@tate e 489
22.15Annexe : Exemples de ” lignes horizontales créoles ” sur tous les diagrammes 489
22.15. 1 Activité . . . L 489
22.15.2C1aSS€ . . . oo 490
22.15.3 Composant, déploiement, cas d’utilisation 491
22.15.4 Planification de projet Gantt oL oL oo 492
22.15.50Dbjet 492
22.15.6 MindMap e 492

§

Guide de référence du langage PlantUML (1.2025.0) 578 / 580

CONTENTS CONTENTS

22.15.7Réseau (nwdiag) 493
22.15.8Note L e e 493
22.15.98equence e e 494
22.15.1@tate L e e e e e e e e 494
22.16Equivalence de style (entre le créole et le HTML)t 494
23 Defining and using sprites 496
23.1 Inline SVG sprite L 496
23.2 Changing colors L. 498
23.3 Encoding Sprite 498
23.4 Tmporting Sprite 499
23.5 Examples L e 499
23.6 StdLib e e e 500
23.7 Listing Sprites 500
24 Skinparam command 502
24.1 Usage 502
24.2 Nested o e 502
24.3 Black and White e 502
24.4 Shadowing 503
24.5 Reverse colors e e 503
24.6 Colorso e 504
24.7 Font color, name and size 505
24.8 Text Alignment L. 505
24.9 Examples L e e 506
24.10List of all skinparam parameters 510
24.10.1 Command Line: -language command 0., 510
24.10.2Command: help skinparams o 510
24.10.3 Command: skinparameters L oo 510
24.10.4 A1l Skin Parameters on the Ashley’s PlantUML Doc 513

25 Preprocesseur 514
25.1 Variable definition [=, 7=] 514
25.2 Boolean expression Lo e e e 515
25.2.1 Boolean representation [0is false] L oL 515
25.2.2 Boolean operation and operator [&&, ||, ()]o 515
25.2.3 Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)] . . 515

25.3 Conditions [lif, lelse, lelseif, lendif] oo 515
25.4 While loop [!while, lendwhile] o L 516
25.4.1 While loop (on Activity diagram) o 516
25.4.2 While loop (on Mindmap diagram) o o 517
25.4.3 While loop (on Component/Deployment diagram) 518

25.5 Procedure [!procedure, lendprocedure] 518
25.6 Return function [function, lendfunction] Lo oL 519
25.7 Default argument value L 520
25.8 Unquoted procedure or function [lunquoted] L L. 521
25.9 Keywords argumentso oL e e 522
25.10Including files or URL [linclude, linclude__many, linclude_once] 522
25.11Including Subpart [!startsub, lendsub, lincludesub] 523
25.12Builtin functions [%] 523
25.13Logging [Mog] 524
25.14Memory dump [ldump_memory] 525
25.15Assertion [lassert] 525
25.16Building custom library [limport, linclude] oo 526
25.17Search path oL 526
25.18 Argument concatenation [##] 526
25.19Dynamic invocation [invoke_procedure(), %call_user_func()] 527
25.20Evaluation of addition depending of data types [+] 528
25.21Preprocessing JSON L 528

«
&« Guide de référence du langage PlantUML (1.2025.0) 579 / 580

CONTENTS CONTENTS
25.22Including theme [Itheme] L L 528
25.23Migration notes L. oL e e e 529
25.24%splitstr builtin functiono Lo 529
25.25%splitstr_regex builtin function oL oo 530
25.26%get_all_theme builtin function oL oo 531
25.27%get_all_stdlib builtin function Lo oo 532

25.27.1 Compact version (only standard library name) 532
25.27.2 Detailed version (with version and source) 532
25.28%random builtin function L. 534
25.29%boolval builtin functiono 534

26 Unicode 535
26.1 Examples e 535
26.2 Jeu de caracteres L e e 537
26.3 Using Unicode Character on PlantUML 537

27 Bibliothéque standard de PlantUML 538

27.0.1 Vue d’ensemble de la bibliotheque standard 538
27.0.2 Contribution de la communauté.o L 538
27.1 Contenu de la bibliotheque standard L oL oL 538
27.2 ArchiMate [archimate] L 540
27.2.1 Liste des sprites possibles 541
27.3 Amazon Labs AWS Library [awslib] 542
27.4 Azure library [azure] 543
27.5 C4d Library [C4] o oo 544
27.6 Cloud Insight [cloudinsight] 544
27.7 Cloudogu [cloudogu] 545
27.8 EDGY: An Open Source tool for collaborative Enterprise Design [edgy] 546
27.8.1 Basic Elements and Interconnections L 546
27.8.2 Elements e 547
27.8.3 Relationships oL 548
27.8.4 Facets e e 549
27.8.5 Identity 549
27.8.6 Architecture 549
27.8.7 Experience e e 550
27.8.8 Intersections L 550
27.8.9 Alternative visual styling 551
27.9 Elastic library [elastic] 552
27.10Google Material Icons [material] Lo 554
27.11Kubernetes [kubernetes] 555
27.12Logos [logos] L 556
27.130ffice [office] 558
27.140pen Security Architecture (OSA) [osa] o 560
27.15Tupadr3 library [tupadr3] 563
27.16Bibliotheque AWS L 564
«
Guide de référence du langage PlantUML (1.2025.0) 580 / 580

	Diagramme de séquence
	Exemples de base
	Déclaration d'un participant
	Déclaration des participants sur plusieurs lignes
	Caractères non alphanumérique dans les participants
	Message à soi-même
	Alignement du texte
	Texte du message de réponse sous la flèche

	Autre style de flèches
	Changer la couleur des flèches
	Numérotation séquentielle des messages
	Titre, en-tête et pied de page de la page
	Découper un diagramme
	Regrouper les messages (cadres UML)
	Étiquette secondaire de groupe
	Note sur les messages
	Encore plus de notes
	Changer l'aspect des notes
	Note sur tous les participants [à travers]
	Plusieurs notes alignées au même niveau [/]
	Créole (langage de balisage léger) et HTML
	Diviseur ou séparateur
	Référence
	Retard
	Habillage du texte
	Séparation verticale
	Lignes de vie
	Retour
	Création d'un participant
	Syntaxe raccourcie pour l'activation, la désactivation, la création
	Messages entrant et sortant
	Flèches courtes pour les messages entrants et sortants
	Anchors and Duration
	Stéréotypes et décoration
	Position of the stereotypes
	Top postion (by default)
	Bottom postion

	Plus d'information sur les titres
	Cadre pour les participants
	Supprimer les participants en pied de page
	Personnalisation
	Changer le padding
	Appendix: Examples of all arrow type
	Normal arrow
	Itself arrow
	Incoming and outgoing messages (with '[', ']')
	Incoming messages (with '[')
	Outgoing messages (with ']')
	Short incoming and outgoing messages (with '?')
	Short incoming (with '?')
	Short outgoing (with '?')

	SkinParameter spécifique
	Par défaut
	LifelineStrategy
	style strictuml

	Masquer un participant non lié
	Colorier un groupe de message
	Mainframe
	Slanted or odd arrows
	Parallel messages (with teoz)

	Diagramme de cas d'utilisation
	Cas d'utilisation
	Acteurs
	Changer le style d'acteur
	Stick man (par défaut)
	Homme creux

	Description des cas d'utilisation
	Utiliser un package
	Exemples très simples
	Héritage
	Notes
	Stéréotypes
	Changer les directions des flèches
	Découper les diagrames
	De droite à gauche
	La commande Skinparam
	Exemple complet
	Business Use Case
	Business Use Case
	Acteur commercial

	Modifier la couleur et le style des flèches (style en ligne)
	Modifier la couleur et le style d'un élément (style en ligne)
	Afficher les données JSON sur le diagramme Usecase
	Exemple simple

	Diagramme de classes
	Élément déclaratif
	Relations entre classes
	Libellés sur les relations
	Caractères non alphabétiques dans les noms d'éléments et les étiquettes de relations
	Commencer un nom avec $

	Ajouter des méthodes
	Définition de la visibilité
	Abstrait et statique
	Corps de classe avancé
	Notes et stéréotypes
	Plus de notes
	Note sur un champ (champ, attribut, membre) ou une méthode
	Note sur un champ ou une méthode
	Note sur une méthode de même nom

	Note sur les liens
	Classe et interface abstraites
	Masquer les attributs et les méthodes
	Masquer les classes
	Supprimer des classes
	Hide, Remove or Restore tagged element or wildcard
	Masquer ou supprimer une classe non liée
	Utilisation de la généricité
	Caractère spécial
	Packages
	Modèle de paquet
	Les espaces de nommage
	Creation automatique d'espace de nommage
	Interface boucle
	Changer la direction
	Classes d'association
	Association sur la même classe
	Personnalisation
	Stéréotypes Personnalisés
	Dégradé de couleurs
	Aide pour la mise en page
	Découper les grands diagrammes
	Extension et implementation [extends, implements]
	Relations entre crochets (liens ou flèches) style
	Style de ligne
	Couleur de ligne
	Épaisseur de ligne
	Mélange

	Modifier la couleur et le style d'une relation (lien ou flèche) (style en ligne)
	Modifier la couleur et le style d'une classe (style en ligne)
	Flèches de/vers les membres de la classe
	Regroupement de flèche d'héritage
	GroupInheritance 1 (pas de regroupement)
	GroupInheritance 2 (regroupement à partir de 2)
	GroupInheritance 3 (regroupement uniquement à partir de 3)
	GroupInheritance 4 (regroupement uniquement à partir de 4)

	Display JSON Data on Class or Object diagram
	Simple example

	Packages and Namespaces Enhancement
	Qualified associations
	Minimal example
	Another example

	Change diagram orientation
	Top to bottom (by default)
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)
	Left to right
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)

	Diagramme d'objets
	Définition des objets
	Relations entre les objets
	Association d'objects
	Ajout de champs
	Caractéristiques communes avec les diagrammes de classes
	Table de correspondance ou tableau associatif
	Program (or project) evaluation and review technique (PERT) with map
	Display JSON Data on Class or Object diagram
	Simple example

	Diagrammes d'activité (ancienne syntaxe)
	Action simple
	Texte sur les flèches
	Changer la direction des flèches
	Branches
	Encore des branches
	Synchronisation
	Description détaillée
	Notes
	Partition
	Paramètre de thème
	Octogone
	Exemple complet

	Diagramme d'activité (nouvelle syntaxe)
	Avantages de la nouvelle syntaxe
	Transition vers la nouvelle syntaxe
	Action simple
	Départ/Arrêt [start, stop, end]
	Conditionnel [if, then, else]
	Plusieurs conditions (en mode horizontal)
	Plusieurs conditions (en mode vertical)

	Switch and case [switch, case, endswitch]
	Arrêt après une action au sein d'une condition [kill, detach]
	Boucle de répétition [repeat, repeatwhile, backward]
	Interruption d'une boucle [break]
	Goto and Label Processing [label, goto]
	Boucle « tant que » [while]
	Traitement parallèle [fork, fork again, end fork, end merge]
	Simple fork
	fork avec fusion finale
	Label sur end fork (ou UML joinspec)
	Autre exemple

	Traitement fractionné
	Split
	Fractionnement de l'entrée (multidébut)
	Fractionnement de la sortie (plusieurs extrémités)

	Notes
	Couleurs
	Lignes sans pointe de flèches
	Flèches
	Connecteurs
	Connecteurs en couleur
	Regroupement ou partition
	Groupe
	Partition
	Groupe, partition, paquet, rectangle ou carte

	Swimlanes
	Détacher ou arrêter [detach, kill]
	SDL (Specification and Description Language)
	Exemple complet
	Style de condition
	Style intérieur (par défaut)
	Style diamant
	Style InsideDiamond (ou Foo1)

	Style de fin de condition
	Style diamant (par défaut)
	Style ligne horizontale (hline)

	Avec le style (global)
	Sans style (par défaut)
	Avec style

	Diagramme de composants
	Composants
	Interfaces
	Exemple de base
	Utilisation des notes
	Regroupement de composants
	Changement de direction des flèches
	Utiliser la notation UML2
	Utiliser la notation UML1
	Utiliser le style rectangle (supprime toute notation UML)
	Description longue
	Couleurs individuelles
	Sprites et stéréotypes
	Skinparam
	Paramètre de style spécifique
	componentStyle

	Masquer ou supprimer un composant non lié
	Masquer, supprimer ou restaurer un composant balisé ou un joker
	Display JSON Data on Component diagram
	Simple example

	Port [port, portIn, portOut]
	Port
	PortIn
	PortOut
	Mixing PortIn & PortOut

	Diagramme de déploiement
	Déclarer un élément
	Declaring element (using short form)
	Actor
	Component
	Interface
	Usecase

	Linking or arrow
	Bracketed arrow style
	Line style
	Line color
	Line thickness
	Mix

	Change arrow color and style (inline style)
	Change element color and style (inline style)
	Nestable elements
	Packages and nested elements
	Example with one level
	Other example
	Full nesting

	Alias
	Simple alias with as
	Examples of long alias

	Round corner
	Specific SkinParameter
	roundCorner

	Appendix: All type of arrow line
	Appendix: All type of arrow head or '0' arrow
	Type of arrow head
	Type of '0' arrow or circle arrow

	Appendix: Test of inline style on all element
	Simple element
	Nested element
	Without sub-element
	With sub-element

	Appendix: Test of style on all element
	Simple element
	Global style (on componentDiagram)
	Style for each element
	Nested element (without level)
	Global style (on componentDiagram)
	Style for each nested element
	Nested element (with one level)
	Global style (on componentDiagram)
	Style for each nested element

	Appendix: Test of stereotype with style on all element
	Simple element

	Display JSON Data on Deployment diagram
	Simple example

	Mixing Deployment (Usecase, Component, Deployment) element within a Class or Object diagram
	Mixing all elements

	Port [port, portIn, portOut]
	Port
	PortIn
	PortOut
	Mixing PortIn & PortOut

	Change diagram orientation
	Top to bottom (by default)
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)
	Left to right
	With Graphviz (layout engine by default)
	With Smetana (internal layout engine)

	Diagramme d'état
	Exemple simple
	Autre rendu
	État composite
	Sous-état interne
	Lien entre sous-états

	Nom long
	Historique de sous-état [[H], [H*]]
	États parallèles [fork, join]
	États concurrents [–, ||]
	Séparateur horizontal –
	Séparateur vertical ||

	Conditionnel [choice]
	Exemple avec tous les stéréotypes [choice, fork, join, end]
	Petits cercles [entryPoint, exitPoint]
	Petits carrés [inputPin, outputPin]
	Multiples petits carrés [expansionInput, expansionOutput]
	Direction des flèches
	Changer la couleur ou le style des flèches
	Note
	Note sur un lien
	Plus de notes
	Changer les couleurs localement [Inline color]
	Skinparam
	Test de tous les skinparam spécifiques aux diagrammes d'état:

	Changement de style
	Modifier la couleur et le style d'un état (style en ligne)
	Alias
	Display JSON Data on State diagram
	Simple example

	State description
	Style for Nested State Body

	Diagramme de temps
	Définitions des participants
	Horloge et signaux binaires
	Ajout de messages
	Référence relative de temps
	Points d'ancrage
	Définition participant par participant
	Choix du zoom
	État initial
	État complexe
	Hidden state
	Masquer l'axe du temps
	Utilisation de l'heure et de la date
	Change Date Format
	Manage time axis labels
	Label on each tick (by default)
	Manual label (only when the state changes)

	Ajout de contraintes
	Période surlignée
	Using notes
	Ajout de textes
	Exemple complet
	Exemple numérique
	Ajout de couleur
	Using (global) style
	Without style (by default)
	With style

	Applying Colors to specific lines
	Compact mode
	By default
	Global mode with mode compact
	Local mode with only compact on element

	Scaling analog signal
	Without scaling: 0-max (by default)
	With scaling: min-max

	Customise analog signal
	Without any customisation (by default)
	With customisation (on scale, ticks and height)

	Order state of robust signal
	Without order (by default)
	With order
	With order and label

	Defining a timing diagram
	By Clock (@clk)
	By Signal (@S)
	By Time (@time)

	Annotate signal with comment

	Display JSON Data
	Complex example
	Highlight parts
	Using different styles for highlight
	JSON basic element
	Synthesis of all JSON basic element

	JSON array or table
	Array type
	Minimal array or table
	Number array
	String array
	Boolean array

	JSON numbers
	JSON strings
	JSON Unicode
	JSON two-character escape sequence

	Minimal JSON examples
	Empty table or list
	Using (global) style
	Without style (by default)
	With style

	Display JSON Data on Class or Object diagram
	Simple example
	Complex example: with all JSON basic element

	Display JSON Data on Deployment (Usecase, Component, Deployment) diagram
	Simple example

	Display JSON Data on State diagram
	Simple example

	Creole on JSON

	Display YAML Data
	Complex example
	Specific key (with symbols or unicode)
	Highlight parts
	Normal style
	Customised style

	Using different styles for highlight
	Using (global) style
	Without style (by default)
	With style

	Creole on YAML

	Diagramme de réseau avec nwdiag
	Diagramme simple
	Définir un réseau
	Définir certains éléments ou serveurs sur un réseau
	Exemple complet

	Define multiple addresses
	Grouping nodes
	Define group inside network definitions
	Define group outside of network definitions
	Define several groups on same network
	Example with 2 group
	Example with 3 groups

	Extended Syntax (for network or group)
	Network
	Group

	Using Sprites
	Using OpenIconic
	Same nodes on more than two networks
	Peer networks
	Peer networks and group
	Without group
	Group on first
	Group on second
	Group on third

	Add title, caption, header, footer or legend on network diagram
	With or without shadow
	With shadow (by default)
	Without shadow

	Change width of the networks
	First example
	Second example

	Other internal networks
	Using (global) style
	Without style (by default)
	With style

	Appendix: Test of all shapes on Network diagram (nwdiag)

	Salt (Wireframe)
	Composants de base
	Text area
	Ouvrir, fermer une liste déroulante
	Utilisation de la grille [| et #, !, -, +]
	Regroupement de champs
	Utilisation des séparateurs
	Arbre (structure arborescente) [T]
	Arbre et Tableau [T]
	Accolades délimitantes [{, }]
	Ajout d'onglet [/]
	Utilisation de menu [*]
	Tableaux avancés
	Barres de défilement [S, SI, S-]
	Couleurs
	Creole on Salt
	Pseudo sprite [<<, >>]
	OpenIconic
	Ajouter un titre, un en-tête, un pied de page, une légende
	Zoom, DPI
	Sans zoom (par défaut)
	Scale
	DPI

	Include Salt "on activity diagram"
	Include salt "on while condition of activity diagram"
	Include salt "on repeat while condition of activity diagram"
	Skinparam
	Style

	ArchiMate
	Mot-clé Archimate
	Jonctions Archimate
	Exemple 1
	Exemple 2
	Liste des sprites possibles
	ArchiMate Macros
	Archimate Macros and Library
	Archimate elements
	Archimate relationships
	Appendice: Examples of all Archimate RelationTypes

	Diagramme de Gantt
	Déclaration des tâches
	Charge de travail
	Start
	Fin
	Début/Fin

	Déclaration sur une ligne (avec la conjonction et)
	Ajout de contraintes
	Noms courts
	Tasks with same name
	Personnaliser les couleurs
	État d'achèvement
	Ajout du pourcentage d'achèvement selon
	Changer la couleur de l'achèvement (par style)

	Jalon
	Jalon relatif (utilisation de contraintes)
	Jalon absolu (utilisation d'une date fixe)
	Jalon de fin de tâches maximum

	Hyperliens
	Calendrier
	Journées en couleur
	Changement d'échelle
	Daily (par défaut)
	Hebdomadaire
	Mensuel
	Trimestriel
	Annuel

	Zoom (exemple pour toute l'échelle)
	Zoom sur l'échelle hebdomadaire
	Sans zoom
	Avec zoom
	Zoom sur l'échelle hebdomadaire
	Sans zoom
	Avec zoom
	Zoom sur l'échelle mensuelle
	Sans zoom
	Avec zoom
	Zoom sur l'échelle trimestrielle
	Sans zoom
	Avec zoom
	Zoom sur l'échelle annuelle
	Sans zoom
	Avec zoom

	Weekscale with Weeknumbers or Calendar Date
	With Weeknumbers (by default)
	With Weeknumbers (starting from 1)
	With Calendar Date

	Jour non travaillé
	Définition d'une semaine en fonction des jours fermés
	Working days
	Succession de tâches simplifiée
	Travailler avec des ressources
	Hide resources
	Without any hiding (by default)
	Hide resources names
	Hide resources footbox
	Hide the both (resources names and resources footbox)

	Séparateur horizontal
	Vertical Separator
	Exemple complexe
	Comments
	Avec style
	Sans style (par défaut)
	Avec style
	Avec style (exemple complet)
	Nettoyer le style

	Ajouter des notes
	Pause des tâches
	Modifier les couleurs des liens
	Tâches ou jalons sur la même ligne
	Mise en avant aujourd'hui
	Tâche entre deux jalons
	Grammar and verbal form
	Ajouter un titre, un en-tête, un pied de page, une légende ou une légende
	Add color on legend
	Suppression des boîtes de pied (exemple pour toutes les échelles)
	Langue du calendrier
	English (en, par défaut)
	Allemand (de)
	Japonais (ja)
	Chinois (zh)
	Coréen (ko)

	Supprimer des tâches ou des jalons
	Start a project, a task or a milestone a number of days before or after today
	Change Label position
	The labels are near elements (by default)
	Label on first column
	Label on last column

	MindMap
	Syntaxe OrgMode
	Syntaxe Markdown
	Notation arithmétique [+, -]
	Multilignes
	Multiroot Mindmap
	Couleurs
	Avec couleur en ligne
	Avec couleur de style

	Masquer les bordures [_]
	Diagramme multi-directionnel
	Change (whole) diagram orientation
	Left to right direction (by default)
	Top to bottom direction
	Right to left direction
	Bottom to top direction

	Exemple complet
	Changement de style
	nœud, profondeur
	sans boîte

	Word Wrap
	Creole on Mindmap diagram

	Structure de répartition du travail (WBS)
	Syntaxe OrgMode
	Changement de direction [<, >]
	Notation arithmétique [+, -]
	Multi-lignes
	Masquer les bordures [_]
	Colors (with inline or style color)
	Using style
	Word Wrap
	Add arrows between WBS elements
	Creole on WBS diagram

	Mathématiques
	Diagramme indépendant
	Comment cela fonctionne ?

	Information Engineering Diagrams
	Information Engineering Relations
	Entities
	Complete Example

	Commandes communes dans PlantUML
	Global Elements
	Description de la syntaxe créole
	Commande de contrôle du style
	Comments
	Simple comment
	Block comment
	Full example

	Zoom
	Title
	Caption
	Footer and header
	Legend the diagram
	Appendix: Examples on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Appendix: Examples on all diagram with style
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Mainframe
	Appendix: Examples of Mainframe on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Appendix: Examples of title, header, footer, caption, legend and mainframe on all diagram
	Activity
	Archimate
	Class
	Component, Deployment, Use-Case
	Gantt project planning
	Object
	MindMap
	Network (nwdiag)
	Sequence
	State
	Timing
	Work Breakdown Structure (WBS)
	Wireframe (SALT)

	Créole
	Texte mis en évidence
	Listes
	Caractère d'échappement
	Entêtes
	Emoji
	Unicode block 26

	Lignes horizontales
	Links
	Code
	Tableau
	Créer un tableau
	Ajouter une couleur sur les lignes ou les cellules
	Ajouter une couleur sur la bordure et le texte
	Pas de bordure ou même couleur que le fond
	En-tête en gras ou non

	Arbre
	Caractères spéciaux
	Tag HTML
	Common HTML element
	Subscript and Superscript element [sub, sup]

	OpenIconic
	Annexe : Exemples de " liste créole " sur tous les diagrammes
	Activité
	Classe
	Composant, Déploiement, Cas d'utilisation
	Planification de projet Gantt
	Object
	MindMap
	Réseau (nwdiag)
	Note
	Sequence
	State

	Annexe : Exemples de " lignes horizontales créoles " sur tous les diagrammes
	Activité
	Classe
	Composant, déploiement, cas d'utilisation
	Planification de projet Gantt
	Objet
	MindMap
	Réseau (nwdiag)
	Note
	Sequence
	State

	Équivalence de style (entre le créole et le HTML)

	Defining and using sprites
	Inline SVG sprite
	Changing colors
	Encoding Sprite
	Importing Sprite
	Examples
	StdLib
	Listing Sprites

	Skinparam command
	Usage
	Nested
	Black and White
	Shadowing
	Reverse colors
	Colors
	Font color, name and size
	Text Alignment
	Examples
	List of all skinparam parameters
	Command Line: -language command
	Command: help skinparams
	Command: skinparameters
	All Skin Parameters on the Ashley's PlantUML Doc

	Preprocesseur
	Variable definition [=, ?=]
	Boolean expression
	Boolean representation [0 is false]
	Boolean operation and operator [&&, ||, ()]
	Boolean builtin functions [%false(), %true(), %not(<exp>), %boolval(<exp>)]

	Conditions [!if, !else, !elseif, !endif]
	While loop [!while, !endwhile]
	While loop (on Activity diagram)
	While loop (on Mindmap diagram)
	While loop (on Component/Deployment diagram)

	Procedure [!procedure, !endprocedure]
	Return function [!function, !endfunction]
	Default argument value
	Unquoted procedure or function [!unquoted]
	Keywords arguments
	Including files or URL [!include, !include_many, !include_once]
	Including Subpart [!startsub, !endsub, !includesub]
	Builtin functions [%]
	Logging [!log]
	Memory dump [!dump_memory]
	Assertion [!assert]
	Building custom library [!import, !include]
	Search path
	Argument concatenation [##]
	Dynamic invocation [%invoke_procedure(), %call_user_func()]
	Evaluation of addition depending of data types [+]
	Preprocessing JSON
	Including theme [!theme]
	Migration notes
	%splitstr builtin function
	%splitstr_regex builtin function
	%get_all_theme builtin function
	%get_all_stdlib builtin function
	Compact version (only standard library name)
	Detailed version (with version and source)

	%random builtin function
	%boolval builtin function

	Unicode
	Examples
	Jeu de caractères
	Using Unicode Character on PlantUML

	Bibliothèque standard de PlantUML
	Vue d'ensemble de la bibliothèque standard
	Contribution de la communauté
	Contenu de la bibliothèque standard
	ArchiMate [archimate]
	Liste des sprites possibles

	Amazon Labs AWS Library [awslib]
	Azure library [azure]
	C4 Library [C4]
	Cloud Insight [cloudinsight]
	Cloudogu [cloudogu]
	EDGY: An Open Source tool for collaborative Enterprise Design [edgy]
	Basic Elements and Interconnections
	Elements
	Relationships
	Facets
	Identity
	Architecture
	Experience
	Intersections
	Alternative visual styling

	Elastic library [elastic]
	Google Material Icons [material]
	Kubernetes [kubernetes]
	Logos [logos]
	Office [office]
	Open Security Architecture (OSA) [osa]
	Tupadr3 library [tupadr3]
	Bibliothèque AWS

	Contents

